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Abstract

We address two main structural changes occurring in developed

countries: the rise of automation and population ageing. We use an

R&D-based growth model in an OLG framework with endogenous

education and fertility, and automation in the production process.

Our model is able to combine the growth of real wages over time and

either a fall or an increase in birth rates, consistent with recent data

regarding the birth rate by skill group. Moreover, our model allows

for the study of the interplay between the effects of population ageing

and those of automation. The results show a dynamics consistent with

the US trends for the period covering 1970 to 2019.
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1 Introduction

Developed countries have been facing two main structural changes: the

rise of automation and the ongoing process of population ageing. Specifi-

cally, in the United States, the stock of operation robots used in industries

has increased 425% from 1993 to 2019 (International Federation of Robotics,

2020). At the same time, the old-age dependency ratio has increased 34%

during the same period (World Bank, 2020a). Moreover, according to Ner-

lich & Schroth (2018), population ageing is expected to intensify drastically

over the following years. Simultaneously, global automation adoption shows

no signs of slowing down, with recent events, such as the current pandemic,

supporting the incentives for modernization and digitalization of production

on the way to recovery. It is widely known that population ageing induces

many challenges at the macroeconomic level, through changes in, namely, the

savings rate (e.g. Hansen, 1939; Gehringer & Prettner, 2019), human capital

accumulation (e.g. Cervellati & Sunde, 2005), labor supply (e.g. Maestas et

al., 2016) and innovation processes (e.g. B. F. Jones, 2010). Additionally,

automation has been receiving much atention, particulary, regarding its im-

pact on wage inequality and whether this new wave of technology will make

labor redudant (e.g. Brynjolfsson & McAfee, 2014; David, 2015; Acemoglu

& Restrepo, 2018a,b,c; Prettner, 2019; Prettner & Strulik, 2020).

To address the issues brought by automation and population ageing, we

follow an OLG framework with endogenous education and fertility decisions

and with automation that allows one to study the interplay between the ef-

fects of population ageing and those of automation. In particular, we build an

R&D-based model extended to include automation in the production func-

tion, where robots are substitutes to low-skilled workers but complementary

to high-skilled workers, as in Prettner & Strulik (2020), and a demographic

structure, by introducing fertility choice (Baldanzi, Bucci, & Prettner, 2019)

and a survival probability from young to old age (Baldanzi, Prettner, &

Tscheuschner, 2019) in the household sector of the economy.

Only a few studies have analyzed the implications of automation and

demographic changes combined. In an attempt to explain the positive cor-
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relation between GDP growth and population ageing, Acemoglu & Restrepo

(2017, 2021) show that countries experiencing a significant aged population

tend to adopt more automation in their production process, resulting in a

productivity boost which counteracts the effect of an aged labor force. Fol-

lowing their contribution, a new wave of research has arisen in the literature

regarding this issue (Abeliansky & Prettner, 2017; Abeliansky et al., 2020;

Acemoglu & Restrepo, 2017, 2021; Irmen, 2020; Leitner & Stehrer, 2019;

Basso & Jimeno, 2021; Zhang et al., 2021; Stähler, 2021). Some of these

studies show that demographic change can affect robot adoption since the

incentives to become more technological dependent increase. For instance,

as population growth decreases, the incentives to automate increase as the

labor force relative supply decreases. Additionally, as the population ages,

the labor force also becomes older, implying a reduction in productivity due

to deskilling effects, thus increasing the incentives to substitute labor for new

and more productive inputs. These studies focus on the effects of demog-

raphy on automation; however, in a recent contribution, Prettner & Bloom

(2020) refer a possible reverse effect in which automation could also affect

the demographic structure of an economy.

From these contributions, a few relate closely to ours: Irmen (2020), Ace-

moglu & Restrepo (2021), Basso & Jimeno (2021), Zhang et al. (2021) and

Stähler (2021). All these papers explore automation and population aging;

however, they do not include endogenous fertility nor heterogeneous birth

rates across skill groups. In particular, Irmen (2020) presents an extensive

production side where competitive firms perform tasks to produce output,

and tasks require labor and machines as inputs. Zhang et al. (2021) con-

tribution relies on an overlapping generations model that allows for labor

market frictions and skill heterogeneity. Acemoglu & Restrepo (2021) in-

clude heterogenous labor regarding the workers age, instead of their skill.

Nevertheless, Basso & Jimeno (2021) have a more sophisticated production

and demographic side; namely, the authors include a tractable life-cycle that

allows them to investigate the implications of changes in the delay of the

retirement age. Likewise, Stähler (2021) analyzes how this issue affects in-

equality, namely, regarding labor income, wealth, and consumption.
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The challenges brought by an ageing population and automation adoption

and the scarce literature on the interplay between these two topics motivate

the study and the need to understand this relationship to a fuller extent.

Therefore, we propose to complement the existing literature and analyze

whether both drivers of population ageing, a low birth rate and high life

expectancy have the same sort of impact on automation adoption.1 Addi-

tionally, we study the implications of automation on demographic dynamics.

We solve our model numerically and use the US data for the calibration.

We identify several empirical moments for the US for 1970 and beyond and

match the corresponding variable’s level and trend. Our results show pro-

duction and technological, and demographic dynamics consistent with the

US trends from 1970 to 2019. In particular, we introduce different types of

child-raising transfers that are crucial to combine the growth of real wages

over time and either a fall or an increase in birth rates in the model. Such

dynamics is consistent with the different behavior exhibited in the data by

the birth rates of low- and high-skilled households – a (clear) decrease in the

former and a (slight) increase in the latter, from 2006 to 2017 (the period

with available data for these variables).2 To the best of our knowledge, ours

is the first model (i) to combine the growth of real wages over time and

the heterogeneous behavior of the birth rate across skill groups and (ii) to

display birth rates converging towards a constant level as wages (possibly)

grow unbounded, in a framework of both endogenous growth and endogenous

fertility.

The endogenous structure of the birth rates allows our model to fea-

ture a demographic response as automation impacts differently high- and

low skilled-wages and, hence, the households’ fertility choices. At the same

time, the model allows for an automation response, as changes in the de-

mographic side shift the households’ education decisions and, thereby, the

1The substantial decline in the birth rate and the increase in life expectancy have been
the main drivers to explain this issue in developed countries. Note that because migration
only accounts for 3.4% of the total world population, its impact on the age structure of
large countries tends to be dwarfed by fertility and mortality dynamics (Prettner & Bloom,
2020, Chapter 6, pp. 167-8).

2At the same time, the US data shows a clear decline in the total birth rate for the
full period from 1970 onwards.
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firms’ incentives to automate. We show that a technological one-off shock

that accelerates the stock of robots, obtained in the model by increasing

R&D labor efficiency, impacts low- and high-skilled wages differently. Con-

sequently, the demographic side of our model is also affected, specifically, the

declining trend of the low-skilled birth rate slows down as a direct reaction

to the shock and then becomes more accentuated. At the same time, the

(slightly) increasing trend of the high-skilled birth rate intensifies. Overall,

due to the shock, the total birth rate accentuates the negative trend vis-à-vis

the scenario of no shock and, thereby, population ageing accelerates.

Furthermore, we analyze the possible different effects of the drivers of

ageing on automation through the effects of a positive and negative one-off

shock, respectively, to the survival probability (implying a longer expected

life span) and the preferences for having children (inducing lower birth rates).

Our model shows that, in the short and medium run, an increase in the old-

age dependency ratio, either by any of the mentioned shocks, has a positive

effect on the dynamics of the stock of robots. Nevertheless, the long-run effect

of population ageing on robot adoption might differ regarding the primary

driver of ageing: lower birth rates or higher lifespan. More specifically, our

results suggest that countries with lower birth rates as the primary driver of

ageing are expected to have less robot intensity, whereas those with higher

lifespans face more robot adoption.

Finally, to address the advancements of more sophisticated ways of au-

tomation, such as artificial intelligence, we elaborate a short analysis where

it is assumed both low- and high-skilled workers are substitutes to automa-

tion in production (i.e., a ”full-labor automation” scenario). The results show

that the pace of automation is slower than in the baseline model, since, in the

absense of complementarity between robots and high-skilled labor (with the

latter potentially growing given households’ fertility and education choices),

the incentives to automation are less intense. Moreover, there is also a re-

versed effect on the demographic side of the economy. Given the lack of

impact of automation on the wages of both low- and high-skilled workers

in this context, the birth rates are roughly constant, yielding a less severe

ageing problem.
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This paper is organized as follows. In Section 2, we present and solve the

model and analyze the key transmission mechanisms underlying our frame-

work. Then, Section 3 presents the calibration of the model and provides the

results of our numerical simulation, namely, the model’s dynamics and shock

responses. Section 4 shows the results of a scenario where automation can

replace both types of labor in production activities. Finally, our conclusions

are shown in Section 5.

2 Model

To explain the challenges brought by automation and demographic issues,

we consider an analytical framework based on Baldanzi, Bucci, & Prettner

(2019); Baldanzi, Prettner, & Tscheuschner (2019) and Prettner & Strulik

(2020). We consider an overlapping generations model with two life periods.

Individuals enter the economy as young adults and face three main decisions,

regarding their consumption, education and number of children. The inter-

play between the choice of education and that of fertility will be crucial for

the results of our model, as will be shown in Section 3.

As households decide to pursue a college degree, they lose a fraction of

time available to supply labor. They save for retirement, which occurs in

the second period of their life, and gain utility from consumption and the

number of children. To introduce mortality in our framework, we consider

that households have a certain probability of dying at the beginning of the

second period of life. Then, at the end of this period, they die with certainty.

The size of working population is Lt and its growth depends on households’

decision regarding the number of children.

Furthermore, automation enters this economy via the production side,

where both labor and robots are used as inputs. Since individuals differ in

terms of ability levels, not all of them pursue higher education. Hence, our

structure deals with both low- and high-skilled labor, which are affected by

automation in different ways. As usual in the literature on automation, we

consider that only low-skilled labor can be automated; thus, only this type

of workers can be substituted by robots.
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2.1 Households

In this economy, individuals obtain utility from consumption in both life

periods, the number of children they have, and disutility from the effort

taken obtaining a college degree. In period t, the utility function for an

individual of type j = H,L (i.e., high- versus low-skilled) is given by3

uj,t = log(c1,j,t) + βφ log(Rt+1sj,t) + ε log(nj,t)− 1[j=H]v(a) (1)

where c1,j,t is the first period consumption of the generation born at time

t, Rt+1 is gross rental rate of capital, sj,t denotes savings such that c2,j,t =

Rt+1sj,t refers to consumption in the second period of life, nj,t is the number of

children the household decides to have, β is the discount factor, φ represents

the probability of surviving to the next period and ε denotes the utility

weight of children. The component v(a) represents the disutility brought by

the effort of pursuing higher education where the indicator function 1[j=H]

can be translated in one or zero if the individuals decide to invest in a college

degree or not, respectively.4 Note that usually, when modelling fertility and

education decisions, the household is the one choosing the child’s education

level. In our case, we follow an alternative approach so that the individual

chooses his/her own education level by deciding whether to pursue higher

education or not.

The budget constraint faced by the individual is the following

(1− τnj,t − ηj)wj,t + µjnt,j = c1,j,t + sj,t, (2)

where we include not only the opportunity (or time) cost related with raising

a child, which is given by τnj,twj,t, with wj,t denoting real wage, but also an

exogenous (net) contribution µj that can be interpreted as a family allowance

transferred by the government to encourage childbearing5, where µL > µH ;

3As usual in this literature, we assume the household consists of a single individual.
4The details on function v(a) will be provided in Section 2.1.2
5In order to simplify the analysis, we do not explicitly consider a government sector in

the model, but we adopt the usual (underlying) assumption that the government balances
its budget every period by levying the necessary amount of lump-sum taxes.
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however, if µj < 0, households support a direct net cost to childbearing.

Finally, ηj represents the time cost of pursuing higher education.

2.1.1 Consumption and Fertility decisions

With a view to maximizing (1) given (2), we obtain the following first order

conditions:

c1,j,t =
wj,t(1− ηj)
1 + βφ+ ε

, (3)

sj,t =
βφwj,t(1− ηj)

1 + βφ+ ε
(4)

nj,t =
εwj,t(1− ηj)

(1 + βφ+ ε)(τwt,j − µj)
. (5)

The different types of child-raising transfers included in the model, µj

and τ , are crucial to obtain an endogenous birth rate as shown in equation

(5), that is, to have nj,t dependent on an endogenous variable (the wage,

wj,t). This is different from the typical results in the literature on fertility

choice, where a semi-endogenous result obtains (that is, where nj,t depends

only on a vector of structural parameters of the model; e.g., (Galor & Weil,

2000; Strulik et al., 2013; Baldanzi, Bucci, & Prettner, 2019)). Furthermore,

depending on the sign of µj, we are able to have different impacts of wages

on the birth rates, as will be further explained below.

To fully understand our framework, we elaborate, in this section, a partial

equilibrium analysis that allows us to emphasize the transmission mechanism

exhibited in the model. To that end, we consider, for the time being, that

wages are given and analyze how fertility, consumption and savings react

to a given shift in both wages and key parameters that characterize the

household’s optimization problem. We further assume that τwj,t − µj > 0,

since it seems natural that child-raising expenses are not fully covered by

government allowences.6

6This condition is verified under the calibration of the model carried out in Section 3.

8



Proposition 2.1. Let τwj,t − µj > 0.

i) When the wage, wj,t, increases, the birth rate, nj,t, decreases if µj > 0

and increases if µj < 0. In any case, as wj,t → ∞, nj,t converges to a

constant. Furthermore, an increase in wj,t increases consumption, c1,j,t, and

savings, sj,t.

ii) When the cost of raising a child, τ , and the survival probability, φ,

increase, nj,t decreases. However, nj,t increases if the (net) contribution, µj,

and the households’ preferences for a higher number of children, ε, increase.

Proof. i) Taking the derivative of (5), (3) and (4) with respect to wj,t we

have

∂nj,t
∂wj,t

= − ε(1− ηj)µj
(1 + βφ+ ε)(τwj,t − µj)2

∂c1,j,t
∂wj,t

=
(1− ηj)

1 + βφ+ ε
> 0,

∂sj,t
∂wj,t

=
βφ(1− ηj)
1 + βφ+ ε

> 0.

The sign of
∂nj,t
∂wj,t

depends on the sign of µj.

ii) Taking the derivative of (5) with respect to τ , φ, µ and ε we have

∂nj,t
∂τ

= − εw2
t,j(1− ηj)

(1 + βφ+ ε)(τwj,t − µj)2
< 0,

∂nj,t
∂φ

= − βεwt,j(1− ηj)
(1 + βφ+ ε)2(τwt,j − µj)

< 0,

∂nj,t
∂µj

=
εwt,j(1− ηj)

(1 + βφ+ ε)(τwj,t − µj)2
> 0,

∂nj,t
∂ε

=
(1 + βφ)wt,j(1− ηj)

(1 + βφ+ ε)2(τwj,t − µj)
> 0.

We notice that, for a given wage, a higher survival probability, φ, by

reducing the effective intertemporal discount rate and thus incentivising sav-

ings, implies a decrease in the birth rate, nj,t (and also in present consump-

tion, c1,j). However, an increase in the preferences for having children, ε,
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incentivises, for a given wage, a higher birth rate, at the expense of lower

present and future consumption. This result is consistent with the litera-

ture covering demographic effects on economic growth (e.g., Barro & Becker,

1989; Prettner, 2013; Baldanzi, Bucci, & Prettner, 2019; Baldanzi, Prettner,

& Tscheuschner, 2019)

Furthermore, the fact that the sign of
∂nj,t
∂wj,t

depends on the sign of µj

will play a relevent role in the calibration of the model in order to address

the dynamics of the birth rate in the data (see Section 3, below). We recall

that µj can be interpreted as a family allowence, if µj > 0, or a net cost to

childbearing, if µj < 0. Then note that, when µj < 0, wj,t affects positively

nj,t since, in this case, the household faces a net cost per child and, hence,

when the wage increases, it alleviates the impact of the net cost in the budget

constraint and also offsets the opportunity cost of raising a child, which grows

in proportion with the wage level. However, in the opposite scenario of µj >

0, there exists an allowance per child that is independent of the wage level.

Then, an increase in the wage level implies an increase in the opportunity

cost of raising a child, which, in this case, offsets the relief brought by the

wage in the budget constraint. This mechanism is particularly interesting in

order to attain different results regarding the relationship between wages and

the birth rate of low- and high-skilled individuals, by considering different

signs for µL and µH , respectively.

To the best of our knowledge, ours is the first model that compatibi-

lizes growth of real wages over time and either a fall or an increase in birth

rates, with the latter converging towards a constant level as the wage grows

unbounded, in a framework of both endogenous growth and endogenous fer-

tility.

2.1.2 Education decision

The education decision in our model depends on the effort associated with

tertiary education, v(a), and which works as a desutility factor in the indi-

vidual’s utility function (1). To this end, we follow the framework of Prettner

& Strulik (2020) and consider that desutility is negatively related to the in-
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dividual’s level of ability, that is v(a) = θ log
(
ψ/(a− amin)

)
, with a ≥ amin,

where a is the ability of an individual, amin the minimum ability required to

pursue a college degree, ψ and θ are parameters used for calibration. Note

that ψ must be sufficiently large, that is ψ > a− amin, so that v(a) > 0; oth-

erwise, v(a) < 0, which means individuals would obtain direct utility from

pursuing higher education. To reach the realistic environment in which there

is always some portion of workers without higher education, it is defined that

v(a) =∞ for a < amin.

Nevertheless, for those with enough ability, there is also a threshold, ā,

above which an individual decides to invest in education. The indifference

condition affecting the decision of an individual to invest or not invest in

education is given by uH,t = uL,t, which is satisfied for an individual with

ability ā. Replacing (3), (4), (5) and considering ηH = η and ηL = 0 for

simplification, we obtain

v(ā) = (1 + βφ+ ε) log

[
wH,t(1− η)

wL,t

]
+ ε log

[
τwL,t − µL
τwH,t − µH

]
. (6)

We then use function v(a) to get the ability threshold

āt = ψ

[(
wH,t(1− η)

wL,t

)− 1+βφ+ε
θ

·
(
τwL,t − µL
τwH,t − µH

)− ε
θ

]
+ amin. (7)

Comparing with the threshold in Prettner & Strulik (2020), here ā depends

on demographic factors controlled by φ, µj, τ and ε. In particular, there is a

new term (the second term inside the square brackets) that confronts net cost

per child for individuals of type L and that for individuals of type H, i.e.,

the (time) cost related with raising a child minus the family (net) allowance

transferred by the government to encourage childbearing, τwj − µj. This

term arises because the fertility-related cost competes for resources in the

individual’s resource constraint with consumption and education activities.

In turn, the first term inside the square brackets confronts the direct net

benefits from education for individuals of type H versus type L.

For a > ā individuals choose to obtain higher education, that is, to be-

come high-skilled, whereas for levels of a < ā, they remain low-skilled. We
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then use a cumulative distribution function of ability, denoted by F (a), to

define the fraction of high- and low-skilled labor in the economy, so that

LH,t = (1− F (āt))Lt (8)

and

LL,t = F (āt)Lt, (9)

respectively.

Moreover, to complete the ability threshold analysis, we repeat the partial-

equilibrium exercise presented in Section 2.1.1. We assume that τwj,t−µj > 0

(as in Proposition 2.1).

Proposition 2.2. Let τwj,t − µj > 0.

i) If τwj,t − µj > εµj/(1 + βφ), then an increase in the low (respectively,

high)-skilled wage, wL,t (wH,t), implies an increase (decrease) in the ability

threshold, ā, which then implies an increase in the measure of low (high)-

skilled labor, LL (LH). Otherwise, an increase in wL,t and wH,t implies a

decrease in LL and LH , respectively.

ii) When (net) allowences for low-skilled families, µL, increase, ā also

increases. Neverthless, when (net) allowences for high-skilled families, µH ,

increase, ā decreases.

iii) When the survival probability, φ, increases, ā decreases if wH,t(1 −
η)/wL,t > 1. Otherwise, an increase in φ decreases ā.

iv) When preferences for having children, ε, increase, ā decreases as long

as wH,t(1− η)/wL,t > (τwL,t − µL)/(τwH,t − µH). Otherwise, an increase in

ε decreases ā.

v) When childcaring expenses, τ , increase, ā decreases as long as wH,t/wL,t <

(τwH,t − µH)/(τwL,t − µL). Otherwise, an increase in τ increases ā.

Proof. Taking the derivatives of ā with respect to wages, family allowences

and childcaring expenses, respectively, we have

i)

∂ā

∂wH,t
= (ā− amin)

[(
ε

θ

)
τ

τwH,t − µH
−
(

1 + βφ+ ε

θ

)
1

wH,t

]
(10)
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and

∂ā

∂wL,t
= (ā− amin)

[(
1 + βφ+ ε

θ

)
1

wL,t
−
(
ε

θ

)
τ

τwL,t − µL

]
(11)

The sign of (10) and (11) is negative and positive, respectively, provided that

τwj,t − µj > εµj/(1 + βφ).

ii)

∂ā

∂µH
= −ψε

θ

(
wH,t(1− η)

wL,t

)− 1+βφ+ε
θ
(
τwL,t − µL
τwH,t − µH

)−ε−θ
θ τwL,t − µL

(τwH,t − µH)2
< 0

(12)

and

∂ā

∂µL
=
ψε

θ

(
wH,t(1− η)

wL,t

)− 1+βφ+ε
θ
(
τwL,t − µL
τwH,t − µH

)−ε−θ
θ 1

τwH,t − µH
> 0 (13)

iii)
∂ā

∂φ
= −β

θ
(ā− amin) log

(
wH,t(1− η)

wL,t

)
(14)

Under the condition wH,t(1− η)/wL,t > 1, the sign of (14) is negative. This

condition means that there is a skill premium even when one considers the

wage ratio adjusted by the time cost of higher education, (1− η).

iv)

∂ā

∂ε
= −1

θ
(ā− amin)

[
log

(
wH,t(1− η)

wL,t

)
+ log

(
τwL,t − µL
τwH,t − µH

)]
(15)

If
wH,t(1−η)

wL,t
>

τwL,t−µL
τwH,t−µH , the sign of (15) is negative.

v)

∂ā

∂τ
= −ψε

θ

(
wH,t(1− η)

wL,t

)− 1+βφ+ε
θ
(
τwL,t − µL
τwH,t − µH

)−ε−θ
θ wL,t(τwH,t − µH)− wH,t(τwL,t − µL)

(τwH,t − µH)2

(16)

The sign of (16) is negative if wH,t/wL,t < (τwH,t − µH)/(τwL,t − µL).

We notice that the conditions indicated in parts (i), (iii), (iv), and (v)
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of the proof are all verified under the calibration of the model presented in

Section 3 (see Table 1, below).

It is noteworthy that the impact of wj on ā works through the first term

inside the square brackets in equation (7), meaning that the direct net bene-

fits from education in terms of wage outweigh the wage effect on net cost per

child. Because of this, the impact of µj (which alliviates the cost per child)

on ā turns out to have the same sign as the impact of wj.

Furthermore, given the calibration to be provided in Section 3, an in-

crease in φ has a negative impact on ā, implying that when individuals face

an expected higher lifespan, they have more incentives to become high skilled.

Moreover, given the negative impact of ε on ā, we conclude that when the

preferences for having children are stronger, individuals also have more in-

centives to become high skilled.

Note that these relationships will be crucial for the new results of the

model relating fertility choice, (exogenous) mortality and human capital

choice, on one hand, and automation, on the other (see Section 3).

2.2 Demographic dynamics

In this economy, population growth is endogenous. We define the total birth

rate as

nt =
nH,tLH,t + nL,tLL,t

Lt
, (17)

where nH,t and nL,t are the birth rates chosen by the households belonging to

each skill group as shown in equation (5) and LH,t and LL,t are the measures

of high- and low-skilled workers in the economy, as determined by equations

(8) and (9), respectively. Keep in mind that children from both types of

households may become either low- or high-skilled workers, as determined

by the level of ā. Population dynamics is, thus, given by

Lt+1 = ntLt. (18)

Note that, from equations (8), (9) and (18), the growth rates of LH and of

LL, respectively, gLH,t and gLL,t , are functions of nt and F (āt).
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Total population in period t is then given by Lt + φLt−1 where Lt are

individuals born in t (the young) and φLt−1 are the surviving individuals

on their second period of life in t (the old). Hence, we define the old-age

dependency ratio in our model as7

OARt =
φLt−1
Lt

=
φ

nt
. (19)

2.3 Firms

The production side of the economy is based on Prettner & Strulik (2020).

The final-good production sector uses both low- and high-skilled labor as

inputs combined with machines in the form of automation, i.e., robots. Here,

machines only replace labor performed by low-skilled workers, whereas they

are complemented by high-skilled labor. The final good is produced according

to the function

Yt = L1−α
H,Y,t

(
LαL,t +

At∑

i=1

xαi,t

)
, (20)

where: LH,Y,t is high-skilled labor used as an input in final-good production;

LL,t is low-skilled labor; xi,t is the quantity of machines (robots) of variety

i; At represents the level of technology advancement, i.e., the measure of

available varieties of machines at time t; and α ∈ (0, 1) denotes the elasticity

of output with respect to low-skilled labor and to machines. Under produc-

tion function (20), automation (i.e., an increase in At) encapsulates a ’share

effect’, as usually considered in the literature: automation implies replacing

low-skilled labor, thereby decreasing the share of the latter in the production

process.8

Let us denote pi,t as the price of a unit of a machine of variety i and wH,Y,t

and wL,t the wages of each type of human labor (respectively, high- and low-

skilled). Maximizing the profits of this sector, we obtain the following factor

7See Irmen (2020) for a similar use of this concept in the context of an OLG model.
8In fact, it can be shown automation translates into a reduction in the labor share in

the production sector, with the latter converging asymptotically to 1− α (see Prettner &
Strulik, 2020).
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prices

wH,Y,t = (1− α)L−αH,Y,t

(
LαL,t +

At∑

i=1

xαi,t

)
, (21)

wL,t = α

(
LH,Y,t
LL,t

)1−α
, (22)

pi,t = αL1−α
H,Y,tx

α−1
i,t . (23)

We see from these results that, under equation (20), there is an impact of

changes in At on the factor prices which is different from the one in the bench-

mark literature (see, e.g. Romer (1990); C. I. Jones (1995)). To obtain such

result, it is essential that we introduce a substitution relationship between

low-skilled labor and machines. With this in mind, we choose the framework

presented in equation (20), which implies that low-skilled labor and machines

are not, nevertheless, strictly perfect substitutes and, therefore, wL,t is inde-

pendent of At. Note that we could have assumed perfect substitution so that

we would get a result in which At would affect negatively the marginal pro-

ductivity of LL,t and, thereby, wL,t.
9 This result is apparently not consistent

with the empirical literature (see, for instance, Acemoglu (2002); Acemoglu

& Autor (2011)).

The machine-producing sector uses traditional physical capital as input

to produce machines (robots). The production function is xi,t = Ki,t, where

Ki,t is the amount of physical capital employed by each machine producer.10

They use a blueprint (patent) from the R&D sector as fixed input. These

firms operate under monopolistic competition, their profits are given by πi,t =

pi,txi,t − Rtxi,t, and their production is subject to the demand by the final-

good sector given by equation (40). Profit maximization yields

pi,t ≡ pt =
Rt

α
(24)

9In this case, we would have Yt = L1−α
H,Y,t

(
LL,t +

∑At

i=1 xi,t

)α
.

10For simplicity and without any loss of generality, we assume that physical capital
depreciates fully within one period (i.e., one generation).
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In equilibrium, each firm charges the same price pt, and produces the same

amount xi,t ≡ xt. Each firm’s profit is, thus,

πi,t ≡ πt = α(1− α)xαt L
1−α
H,Y,t. (25)

Finally, the R&D sector uses high-skilled labor as input to produce blueprints

for new varieties of robots. Following C. I. Jones (1995), the production func-

tion in this sector is given by

At+1 − At = δ̄tLH,A,t, (26)

where LH,A,t represents the scientists recruited from the pool of high-skilled

workers, δ̄t =
δAγt
L1−λ
H,A,t

denotes the productivity level of scientists that depends

on the efficiency parameter δ, on the strength of intertemporal knowledge

spillovers given by γ ∈ (0, 1] and the congestion or duplication effects rep-

resented by 1 − λ, with λ ∈ [0, 1]. The component δ̄ is external to each

individual R&D firm.

Firms in this sector sell their blueprints at price pA,t and pay the wages

of scientists given by wH,A,t. Hence, their profits are given by pA,t(At+1 −
At)− wH,A,tLH,A,t. Profit maximization and free entry imply the optimality

condition

wH,A,t = δ̄tpA,t, (27)

where pA,t = πt.

2.4 Equilibrium

Combining demand from the final-good and the machines-producing sector,

we obtain the demand for robots xt. Inserting (23) in (24) we get

xi,t ≡ xt = LH,Y,t

(
α2

Rt

) 1
1−α

. (28)

Aggregating, the final-good production function is given by
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Yt = L1−α
H,Y,t

(
LαL,t + Atx

α
t

)
. (29)

Then, capital market clearance requires that Kt =
∑At

i=1Ki,t = Atxt.

Inserting equation (28) in the latter, we find the endogenous interest rate

Rt = α2kα−1t where kt ≡ Kt
AtLH,Y,t

. Moreover, under equilibrium in the final-

good market, we have Kt+1 = Ltst. Considering the two types of households

in the economy, then Kt+1 = LL,tsL,t + LH,tsH,t. It results from here that

kt+1 ≡ Kt+1/(At+1LH,Y,t+1) = (LL,tsL,t + LH,tsH,t)/(At+1LH,Y,t+1). (30)

Replacing (4) in (30) for high- and low-skilled optimal savings, we obtain

the equation for capital dynamics as

kt+1 =
βφ

(1 + βφ+ ε)At+1LH,Y,t+1

{
αLαL,tL

1−α
H,Y,t+(1−η)(1−α)LH,t

[(
LL,t/LH,Y,t

)α
+Atk

α
t

]}
.

(31)

Hence, the system of difference equations (26) and (31) characterize the

model dynamics.

Finally, we guarantee labor market equilibrium through LH,t = LH,Y,t +

LH,A,t. In equilibrium, wages of high-skilled workers in the final-good and

R&D sector are equalized, wH,A,t = wH,Y,t. Replacing (25) in (27), we have

αδxαi,tA
γ
t−1LH,Y,tL

λ−1
H,A,t = LαL,t + Atx

α
i,t.

Rewriting and inserting (28), we get the implicit function

G(·) ≡ αδAγt−1(LH,t − LH,A,t)Lλ−1H,A,t − k−αt
[

(Lt − LH,t)
(LH,t − LH,A,t)

]α
− At = 0 (32)

which, together with equation (8), yields LH,A,t for given Lt, At and kt.

Recall that the time paths of the latter three variables is determined by the
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difference equations (18), (26), and (31), jointly with the initial conditions

L0, A0 and k0.

2.5 Balanced Growth Path

We now characterize the Balanced-Growth Path (BGP) of this model, where

gz will denote generically (zt+1 − zt)/zt. A BGP equilibrium is a (long-run)

equilibrium path along which: i) all variables grow at a constant rate, namely,

gY/Lt = g∗Y/L, gK/Lt = g∗K/L, gAt = g∗A, and gLt = g∗L, where gLt = nt − 1 and

g∗L = n∗ − 1, and ii) the sectoral shares of labor, LH,Y,t/Lt, LH,A,t/Lt and

LL,t/Lt are constant.

Proposition 2.3. The model exhibits an asymptotic BGP where g∗Y/L =

g∗K/L = g∗A = (n∗)
(

λ
1−γ

)
− 1.

Proof. First, replace equation (28) in (29), to get output per worker

Yt
Lt

=
L1−α
H,Y,t

(
LαL,t + AtL

α
H,Y,tk

α
t

)

Lt
. (33)

Assuming that kt and the sectoral shares of labor are constant, then Yt/Lt

grows proportionally with [(LL,t/[LH,Y,tkt])
α+At], where the first term of the

expression is constant. In turn, this implies that, asymtotically, Yt/Lt will

grow proportionally with At, that is g∗Y/L = g∗A.

On the other hand, from the final-good market equilibrium condition, we

have Kt+1/Lt = st. Using equations (4), (21) and (22), and again assuming

the sectoral shares of labor are constant, we see that Kt+1/Lt grows propor-

tionally with a term (constant+At). Then, this implies that, asymtotically,

Kt+1/Lt grows proportionally with At, similarly to Yt/Lt, meaning also that

kt is constant asymtotically.

Furthermore, from equation (26), we reach the growth rate of At, which

is given by

gAt ≡
At+1 − At

At
= δAγ−1t LλH,A,t. (34)

It is then straightforward to show that we have a constant growth rate of
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technology when

g∗A =
(
1 + g∗LH,A

) λ
1−γ − 1. (35)

where g∗LH,A is the constant growth rate of LH,A,t.

It remains to be shown that LH,A,t/LH,t and LH,t/Lt are indeed constant

in the asymptotic BGP and, thus, g∗LH,A = g∗LH = g∗L = n∗ − 1 and also that

n = n∗ is attained.

Lemma 2.4. The model obtains an asymptotic BGP with constant sectoral

shares of labor, when āt → amin and there is a constant population growth

rate, nt = n∗.

Proof. Recalling equation (8), we see that LH,t grows at a constant rate,

g∗LH = g∗L = n∗ − 1, when both F (āt) and nt are constant.11 Then, the

sectoral share LH,t/Lt (and, of course, LL,t/Lt) is constant. In turn, the

latter, together with equation (32), garantees that the sectoral shares of

labor LH,Y,t/LH,t and LH,A,t/LH,t are (asymptotically) constant. Divinding

the left-hand side of (32) by At−1 and using equation (34), yields

αgAt (LH,t − LH,A,t)L−1H,A,t − k−αt
(

Lt − LH,t
LH,t − LH,A,t

)α
1

At−1
− (gAt + 1) = 0

Then, evaluating this equation at the asymptotic BGP, so that gAt = g∗A and

At−1 →∞, and considering again a constant kt and constant sectoral shares

of labor also asymptotically, we get

αg∗A (LH,t − LH,A,t)L−1H,A,t − (g∗A + 1) = 0⇔

⇔
(
LH,Y
LH,A

)∗
=

1

α

(
1 +

1

g∗A

)
.

The condition that F (āt) is contant is satisfied with āt → amin, which

requires wH,t/wL,t → +∞ under 1 + βφ > 0 (see equation 7). Furthermore,

11Note that, what is relevant here is nt and not the birth rate of the high-skilled, nH,t,
because the pool of workers from which high-skilled labor is drawn from, for a given ā, is
L, which grows at the rate nt over time; see equation (18).
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by replacing (8) and (9) in equation (17), we have

nt ≡
nH,tLH,t + nL,tLL,t

Lt
=

nH,t(1− F (āt))Lt + nL,tF (āt)Lt
Lt

=

= nH,t + (nL,t − nH,t)F (āt).

Hence, nH,t, nL,t and F (āt) must be constant so that nt = n∗. Constant nH,t

and nL,t are obtained, from equation (5), either with constant wj,t or with

wj,t → +∞ since

lim
wj,t→∞

nj,t =
ε(1− ηj)

(1 + βφ+ ε)τ
.

Finally, we show that, indeed, wL,t will be constant asymptotically, whereas

wH,t → +∞, which in turn guarantees that wH,t/wL,t → +∞ (as required

for āt → amin). By equation (22), it is immediate to see that wL,t is constant

when the sectoral shares of labor are constant. On the other hand, by equa-

tion (21), jointly with (20), we see that wH,t grows at the same rate as Yt/Lt

also under constant sectoral shares of labor, i.e., grows asymptotically with

At.

3 Results

3.1 Calibration and numerical results

We solve our model numerically using equations (18), (26), (31), (32) and

(8) and calibrate it to fit a number of empirical moments for the US for 1970

and beyond. The values are depicted in Table 1.

The values for α, ψ, θ, amin and L0 are based on Prettner & Strulik

(2020).12 We then calibrate φ to match the average survival probability to

the age of 65 of about 0.7 in 1970 – which we compute using World Bank

(2019b) data on both female and male population – and define β so that

alongside with the values for φ, ε and η, in equation (4), we get a saving rate

12The parameter α is set at a value higher than in the standard literature because, as
in Prettner & Strulik (2020), we target the price-elasticity of robot demand in the data.
According to the authors’ computations, this implies a value of α of about 0.8.
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Literature-based parameters
α 0.78 Elasticity of output with respect to labor
ψ 23 Intercept parameter of v(a)
θ 0.38 Slope parameter of v(a)

amin 100 Minimum ability required to pursue a college degree
L0 1000 Initial level of population

Data-based parameters
β 0.52 Discount factor
φ 0.7 Survival probability
η 0.05 Opportunity cost of higher education
δ 0.12 R&D labor efficiency
λ 0.55 Congestion or duplication effects
γ 0.6 Intertemporal knowlegde spillovers
ε 0.3 Utility weight of children
µH −0.01 High-skilled family (net) allowences
µL 0.1 Low-skilled family (net) allowences
τ 0.31 Cost per child
A0 2 Initial level of technology
k0 1 Initial level of capital per capita

Table 1: Baseline calibration of the model. See text for details.

of 0.21, the average observed in the US between the 70s of the 20th century

and the last decade of this century (Sequeira et al., 2018).

Additionally, we define the values of the parameters δ, λ, γ, η, A0 and

k0 to match the following targets regarding empirical trends for the US: a

skill premium (high-skill/low-skill wage ratio) in 1970 of 1.6, followed by

an upward trend specially after 1981 (Autor, 2010); an annual TFP growth

rate of 1.5% in 1970, with an upward trend up to the mid 1990’s and a

slight downward trend onwards (Feenstra et al., 2015); an R&D share of

0.4% in 1970, followed by a gradual upward trend – which we compute using

the number of Full-Time-Equivalent (FTE) R&D scientists and engineers

in R&D-performing companies from the National Science Foundation (NSF,

2019) and the total labor force from the Penn World Tables (Feenstra et

al., 2015); a college share (graduates) of 20% in 1970, also followed by a

discernible rising trend – which we derive using data on years of schooling
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completed by people that are 25 years old or more (Bureau US Census, 2019);

a GDP growth rate of about 3% in 1970, followed by a slight downard trend

(World Bank, 2020c); and, finally, a stock of robots of about 43.5 thousand

in 1993 (the first year with available data), followed by a significant upward

trend (International Federation of Robotics, 2020).

Finally, we choose the values for ε, µH , µL and τ to fit the following de-

mographic targets: an old age dependency ratio of 16.25% in 1970, followed

by an upward trend (World Bank, 2020a), and three targets regarding the

evolution of the birth rate in the US, i.e., the total birth rate and the birth

rates by skill group. With recent data from the US Census Population (Bu-

reau US Census, 2018) and the National Center for Health Statistics (Martin

et al., 2017), we are able to compute distinct birth rates across skill groups

for the period from 2006 to 2017. To this end, we use data on women with

one birth in the past year broken down by educational attainment and com-

bine this with the total number of births in the same year to obtain the total

number of births by education level. Then, we divide the number of births

by population for each education level to obtain the respetive birth rate (see

Figure 1). This exercise shows that the well-known decrease in birth rates

recently observed in the US is mainly due to the decrease in low-skilled birth

rates. Interestingly, we can see a slight increase in high-skilled birth rates

after 2010. As a reference for the calibration of the model, we look at the

dynamics of the birth rate by skill group, as depicted by Figure 1. For the

total birth rate, however, we consider the behavior over the period 1970-2018.
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Figure 1: Birth rates across skill group from 2006 to 2017. The low- and high-
skilled birth rates result from our own calculations using data from the US Census
Population on women with a child in the past year detailed by educational attain-
ment and on the number of births. See data sources in the text.

We compute our simulations using the calibration shown in Table 1 and

the cumulative distribution function of a standard normal distribution to

specify the ability distribution F (āt). Figures 2 and 3 show the transitional

dynamics of our model given the initial conditions outside the BGP regarding

the main variables versus the data.13 Blue lines represent the simulation

results and dashed red lines the data.14

13Figure 3 does not include the data series corresponding to the variables LL birth rate
and LH birth rate (already depicted in Figure 1) because they pertain to a very short time
period and thus would not be perceptible given the time scale of the simulation exercise.

14Our model provides not enough degrees of freedom to calibrate the level of some
variables with the available parameters; however, the focus of our paper is on the dynamics
of the variables. Given this, we use an ad hoc procedure to adjust the scale of the simulated
series, namely for the TFP growth, R&D share and stock of robots.
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Figure 2: Dynamics of technological and production variables given initial con-
ditions at 1970. Blue lines represent simulation results and red dashed lines the
data. See data sources in the text.

Overall, our model generates dynamics consistent with the US trends for

the key technological and production variables. Figure 2 shows that the TFP

growth path in the model captures the acceleration in the data during the

last quarter of the 20th century, followed by a nearly constant trend at the

beginning of the 21st century (the model shows a downward trend slightly

later than what is observable in recent data). Regarding the ratio of high-

skilled workers to the labor force (graduate share), the model replicates the

positive trend exhibited in the data, although with a slight overshooting of
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the data levels during the first years of the simulation. Also, the behavior

of the share of R&D workers, the stock of robots in production and the skill

premium in the model follows from close the time series in the data.
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Figure 3: Dynamics of demographic variables given initial conditions at 1970. Blue
lines represent simulation results and red dashed lines the data. See data sources
in the text.

The demographic dynamics of our model are shown in Figure 3. Our

model captures the downward trend of the total birth rate in the US, although

this decrease is somewhat smaller than in the data after 2008. Similarly, the

old-age dependency ratio in the model captures the upward trend in the data,

but exhibiting a milder ageing trajectory than that empirically observable

also after 2008. Indeed, our model is not able to capture the intensity of

ageing in its full empirical extent because of the referred to smoother decrease

in the total birth rate (recall equation (19)), but specially due to the fact

the model considers a constant death rate, 1 − φ (whereas, in the data, the

death rate has fallen, generating a positive impact on life expectancy). The

remaining panels show a downward movement for the low-skilled birth rate

and an upward movement for that of the high skilled, which qualitatively
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matches the dynamics in the data, as depicted by Figure 1. The results show

that the decrease in the total birth rate is primarily explained by the low-

skilled birth rate, whereas the behaviour of the high-skilled birth rate shows

a very mild rising trend.

Overall, we underline that, differently from the existing literature, our

model is able to compatibilize real wages growing over time and either falling

or increasing birth rates under a framework of both endogenous growth and

endogenous fertility. We accomplish this by allowing for family (net) al-

lowences transferred by the government, µj, in the household’s budget con-

straint (2), and which may be either positive or negative. As shown in

Proposition 2.1, the sign of µj determines the sign of the correlation between

birth rates and wages over time.

3.2 Exogenous shock

As already emphasized, the structure of the model laid out in Section 2 allows

for the study of interactions between automation, demography, and growth

in a general-equilibrium framework. To explore the mechanisms underlying

those interactions, we now analyze the effects of exogenous one-off shocks to

both the technological and the demographic side to this economy, namely, to

δ, φ and ε, while keeping the values of the remaining parameters unchanged.

The ongoing discussion in the literature on whether automation affects

demography or vice versa (see, e.g., Prettner & Bloom (2020)) motivates this

type of study. Furthermore, the choice of these specific shocks is suggested

by the following US empirical events. First, the increase in the operational

stock of robots of about 426% from 1995 to 2019 (International Federation of

Robotics, 2020), which we replicate by raising the R&D-efficiency parameter,

δ, by 61%.15 Second, the notable decrease in birth rates of about 20% from

15Notice that, under this exercise, we consider a shift in δ alone in order to capture the
dynamics of the stock of robots in the data from 1995 on, while the remaining parameters
are kept unchaged in their baseline values of Table 1. In contrast, in the baseline calibra-
tion, the value of δ was determined simultaneously with the value of a number of other
parameters in order to capture several moments in the data (usually, from 1970 on) besides
the dynamics of the stock of robots. The same logic applies to the exercises pertaining to
φ and to ε.
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1995 to 2019 (World Bank, 2020b), which we introduce in the model by

reducing the utility weight of children, ε, by 11.6%. Finally, the average

probability to survive to the age of 65 in 2018 (World Bank, 2019b), which

we match by raising the surviving-probability parameter, φ, by 10 p.p.

We present the results of this exercise in the following subsections. Herein,

blue lines in the figures represent the dynamics of the model in the base-

line case (no shocks) and green dashed lines the simulated response of key

macroeconomic variables to a given one-off shock as of 1995.

3.2.1 Technological shock

Figure 4 shows the transitional-dynamics effects of an increase in δ of 61%

on key technological and production variables and compares them with the

transition path under the baseline scenario (no shock). The impact on these

variables reveals that the acceleration of the stock of robots is paralleled by an

increase in GDP growth over transition vis-à-vis the time path in the baseline

scenario. This positive impact is explained by the increase in the TFP growth

rate, resulting directly from the increase in R&D labor productivity induced

by the increase in δ. As its productivity increases, the share of high-skilled

labor allocated to R&D accelerates and, therefore, the share of this type of

labor in final-good production weakens. Nevertheless, as the former starts

to decrease, the latter increases, reaching a level above the time path in

the baseline scenario. Furthermore, the positive trend of the high-skilled

wage intensifies due to the direct effect of the increase in R&D (high-skilled)

labor productivity (recall equation (27)). In parallel, the increase in δ has

a short- and medium-run negative impact on the upward trend of the low-

skilled wage, followed by a positive effect towards the asymptotic BGP. This

behavior occurs due to the impact of the share of high-skilled labor in final-

good production (recall equation (22)). Consequently, there is a first stage

under which the skill premium raises due to a negative and positive response

of, respectively, the low- and high-skilled wage trends. Afterward, despite

the acceleration in the low-skilled wage, the skill premium continues to grow,

given the more significant increase in the high-skilled wage. Moreover, the
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behaviour already described of both wages decreases the ability threshold, ā,

and, hence, increases the share of graduates in the economy (see Proposition

2.2). Our results also show that the boost of the stock of robots is due first to

the direct rise of blueprints because of the increased R&D efficiency and then

to the increase in the high-skilled labor allocated to final-good production

(as this increases the demand for robots).

Additionally, we look at the long-run (BGP) effects of this shock (not

shown in Figure 4). Our model shows that a one-off increase in the labor

efficiency of R&D has permanent effects in the skill-premium and the stock

of robots (i.e., the shock sets their upward time path permanently above

the time path under no shock) explained by, respectively, the (permanent)

acceleration of the high-skilled wage, directly affected by δ, and the increase

in the stock of blueprints. However, the TFP and GDP growth rates and the

sectoral shares of labor all follow a hump-shaped transition path towards the

unaltered asymptotic BGP. As explained in Section 2.5, in the asymptotic

BGP, the ability threshold converges to the value of amin; hence, whatever

the shock, the share of high-skilled labor stays unaltered. Moreover, TFP

and GDP growth rates are also unchanged vis-à-vis the BGP with no shock

due to the unaffected total birth rate (as will be further explained below). In

turn, the latter implies that the sectoral shares of high-skilled labor converge

to the same BGP level as in the baseline scenario (see Proposition 2.3 and

Lemma 2.4).
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Figure 4: Response of technological and production variables to an exogenous
one-off increase of 61% in δ in 1995. Blue lines represent the baseline scenario
(δ = 0.12) and green dashed lines the shock response (δ = 0.1932).

In turn, Figure 5 shows the implication of the increase in δ, leading to an

acceleration of the stock of robots, on demography. The recent discussion of

the interplay between automation and demography has brought the issue of

whether robots can affect the demographic dynamics and age structure of an

economy (Prettner & Bloom, 2020). We find, in our model, that robots and

demography interact by means of the acceleration of wages. As we mentioned

above, the one-off shift in δ originates an acceleration of high-skilled wages,

whereas the upward trend of low-skilled wages first weakens and then is
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followed by a boost. Consequently, there is an intensification of the increase

in the high-skilled birth rate, while the low-skilled birth rate first attenuates

the fall and then intensifies it. Overall, these movements translate into a

more intense fall in the total birth rate than in the baseline scenario. In

turn, the latter leads to an acceleration of the old-age dependency ratio.

However, the analysis of the BGP effects indicates that the change in δ

has no long-run impact on the demographic side of the model. The low- and

high-skilled birth rates are unaltered vis-à-vis the BGP with no shock since

the low-skilled wage also remains unaltered while, in the case of high-skilled

labor, as the wage tends to infinity, the birth rate converges to the same

BGP level than in the scenario with no shock (recall Lemma 2.4). Hence,

with the sectoral shares of labor and the skill-type birth rates unaffected,

there is also no permanent effect on the total birth rate. As a consequence,

the old-age dependency ratio also returns to the pre-shock level in the long-

run equilibrium.
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Figure 5: Response of demographic variables to an exogenous one-off increase of
61% in δ in 1995. Blue lines represent the baseline scenario (δ = 0.12) and green
dashed lines the shock response (δ = 0.1932).
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3.2.2 Demographic shocks

We now analyze the effect of demographic shocks versus the baseline scenario

(no shocks). Figures 6 and 8 display the effect of a one-off increase of 10 pp.

in φ to match the share of people that survives to age 65 in 2018. Figures

7 and 9 show the impact of a one-off decrease of 11.6% in ε to replicate the

decrease of about 20% in the birth rate from 1995 to 2019.

We compare first the implications regarding the technology and produc-

tion side of the model, depicted in Figures 6 and 7. The increase in φ has

a negative effect on the ability threshold, thus positively affecting the share

of high-skilled labor (graduate share). However, a decrease in ε has the op-

posite effect on the ability threshold, and hence, it decreases the share of

qualified labor; nevertheless, in the first period after this shock, the share of

high-skilled labor slightly accelerates due to the endogenous effect of wages

on the ability threshold (recall Proposition 2.2). Regarding the share of R&D

labor, both shocks induce a (slight) oscillatory behavior in which first there

is an acceleration and then there is a downward movement, reaching a level

below that of the baseline scenario. Moreover, high-skilled labor allocated to

final-good production intensifies under the two types of shocks despite the

first response of the R&D labor share. Note that during the first period after

the shock, total high-skilled labor is increasing (even when its share is reced-

ing). Following this, there is a reallocation of high-skilled workers between

the two sectors. Finally, reflecting the reallocation of labor described above,

the TFP growth rate reacts to an increase in φ by accelerating in the first

and second period and then slowing down vis-à-vis the baseline scenario. In

the case of a decrease in ε, the TFP growth rate (slightly) accelerates in the

first period and begins to slow down right afterward, thus displaying a faster

adjustment than under the shift in φ. The GDP growth rate presents a simi-

lar qualitative response to that of the TFP growth rate, with the acceleration

induced by the shock remaining longer in the case of an increase in φ.

Furthermore, importantly, our model shows that the effects of a shock

inducing population ageing on the skill premium and the stock of robots

may differ when ageing arises from a decrease in the birth rate (inducted by
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a decrease in ε) or an increase in the individual’s expected lifespan (increase in

φ). The increasing trend of the skill premium slows down in the first scenario

due to the less intense upward movement in the high-skilled wage, whereas

it becomes more accentuated in the second one given the acceleration of this

wage. The different response of the stock of robots explains the different

response of high-skilled wage (recall equation (21)). Note that, from the

combination of the response of the TFP growth rate and the sectoral shares

of labor, it results that this stock tends to increase below the baseline time

path in the case of a one-off decrease in ε and increases above the baseline

under a one-off increase in φ. However, our results also show that during the

first period after the shock in ε, the stock of robots also slightly accelerates.16

Therefore, even though both drivers of an ageing population can affect robot

adoption positively in the short and medium run, the result can be different

in the long run, as further explained below.

The long-run analysis reveals for both shocks that the TFP and GDP

growth rates face a permanently lower level than that of the baseline scenario,

explained by the permanent decrease in the birth rate (as shown below). As

already mentioned, the share of high-skilled labor remains unaffected asymp-

totically due to āt → amin, whereas the R&D share attains a permanently

lower level than in the baseline case in parallel with the referred to decrease

in the TFP growth rate. Hence, high-skilled labor used in the final-good

sector increases (see Lemma 2.4).

Additionally, the stock of robots shows a permanent lower (respectively,

higher) level than that in the baseline case in the scenario of a one-off decrease

(increase) in ε (φ). The same occurs to the skill premium. Hence, the long-

run effect of population ageing indicates that its impact on the skill premium

and robot adoption differs regarding the primary driver of ageing: a lower

total birth rate or a longer expected lifespan.

16Although the behaviour of the high-skilled wage follows that of the stock of robots
during the first period after the decrease in ε, afterwards the upward trend of this wage
weakens while the stock of robots accelerates. This discrepancy is due to the negative
effect of the decrease in the low-skilled labor on the high-skilled wage (recall equation 21).
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Figure 6: Response of technological and production variables to an exogenous
one-off increase of 10 p.p. in φ in 1995. Blue lines represent the baseline scenario
(φ = 0.7) and green dashed lines the shock response (φ = 0.8).
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Figure 7: Response of technological and production variables to an exogenous
one-off decrease of 11.6% in ε in 1995. Blue lines represent the baseline scenario
(ε = 0.3) and green dashed lines the shock response (ε = 0.265).

The impact of these shocks on the demography side is straightforward

since φ and ε directly affect consumption and fertility decisions. An increase

in the survival probability and a decrease in the preference for having chil-

dren decreases the birth rates, intensifying the downward trajectory vis-à-vis

the baseline case of no shock (see Proposition 2.1). Facing a longer lifespan

due to a higher φ, individuals choose to save more, which implies a lower con-

sumption level and a lower birth rate for both types of labor in the first period

of life (in the case of the high-skilled, the short- and medium-run response
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to the shock implies that the birth rate detaches from the upward trajectory

observed in the baseline scenario). This is a typical result in the literature

of demography and economics; see, for instance, Prettner (2013); Baldanzi,

Prettner, & Tscheuschner (2019). In this case, the old-age dependency ratio

intensifies its increase due to the increase in φ and the (endogenous) decrease

in the total birth rate. On the other hand, as ε represents the utility weight

of having children, a decrease in this parameter intensifies the decrease in

both birth rates (see Proposition 2.1). Here, the old-age dependency ratio

increases only due to the (endogenous) fall in the (total) birth rate.
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Figure 8: Response of demographic variables to an exogenous one-off increase of
10 p.p. in φ in 1995. Blue lines represent the baseline scenario (φ = 0.7) and green
dashed lines the shock response (φ = 0.8).
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Figure 9: Response of demographic variables to an exogenous one-off decrease of
11.6% in ε in 1995. Blue lines represent the baseline scenario (ε = 0.3) and green
dashed lines the shock response (ε = 0.265).

To sum up, one of this study’s main findings regarding the impact of

demographic shocks is that when the old-age dependency ratio increases,

either by a decrease in ε or an increase in φ, the short- and medium-run effect

on the demand for robots is positive. The sign of the relationship between

ageing and automation in our model is consistent with recent literature, e.g.

Acemoglu & Restrepo (2017, 2021); Basso & Jimeno (2021); Zhang et al.

(2021); yet, their results refer to the long-run impact of ageing. In turn,

in our model, the long-run effect on the dynamics of the stock of robots

differs depending on whether population ageing is induced by a lower total

birth rate or a longer expected lifespan. In particular, the mechanisms in

our model suggest that countries experiencing a fall in birth rates do not

have many incentives to adopt automation, at least in the long run. Our

findings contrast with those of Irmen (2020), first regarding the short- and

medium-run effect of ageing, since, in that paper, there is a negative impact

on automation, and also regarding that paper’s result that both forces of
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ageing have the same positive impact on automation in the long-run.

Additionally, our model’s interaction between human capital and fertility

decision complements the standard literature on child quantity versus quality.

We obtain a different result for the effect of ε on human capital and the effect

of wages on the fertility decision. If households have strong preferences to

have children (higher ε), the ability threshold decreases – which implies an

increase in the share of high-skilled labor in the economy – whereas, in the

standard literature, it decreases due to the trade-off between child quantity

and quality (e.g. Barro & Becker, 1989; Prettner, 2013; Baldanzi, Prettner,

& Tscheuschner, 2019; Baldanzi, Bucci, & Prettner, 2019). In our case, the

decision on whether an individual becomes high or low skilled is her own

and not her parents’; therefore, our model represents an economy in which

households who wish to have more children tend to become high skilled,

hence, receive a higher wage level. At the same time, given the calibration

of our model, we obtain a positive relation between the wage and fertility

decision for high-skilled labor and a negative one for low-skilled labor, which

seems to be the case in light of the recent data depicted in Figure 1.

4 Extension: full-labor automation

The view that only low-skilled labor can be automated is expected to

be outdated by the rise of a more sophisticated technology, e.g., artificial

intelligence (AI). Up until now, the majority of automated work has been re-

placing positions occupied by low-skilled labor. However, the development of

AI alongside big data and machine learning increased the pace of automation

by enabling high-skilled positions to become also a job for robots. Examples

of such occupations include accounting, mortgage origination, management

consulting, financial planning, paralegals, and various medical specialties, in-

cluding radiology, general practice, or even surgery (Acemoglu & Restrepo,

2018b). By allowing machines to adapt to new tasks, AI should permanently

facilitate machines catching up with labor in producing each task (Guimarães

& Gil, 2019).

With this in mind, we now consider a production function modified so
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that automation can replace labor performed by both low- and high-skilled

workers in production. Aggregate production occurs according to the func-

tion

Yt = L1−α
Y,t +

At∑

i=1

xαi,t, (36)

where LY,t = (LσH,Y,tL
1−σ
L,t ) represents the human labor in the production

process, with high-skilled labor denoted by LH,Y,t and low-skilled labor by LL,t

and where σ ∈ (0, 1) controls for the elasticity of substitution between high-

and low-skilled labor. As before, xi,t is the quantity of machines (robots) of

variety i, At represents the measure of available varieties of machines at time

t, and α ∈ (0, 1) denotes the elasticity of output with respect to automation.

We show in the appendix the details on the derivations regarding this version

of the model.17,18

To fully understand how the interplay of demography and automation

changes under the future scenario of machines replacing both types of labor,

we repeat our simulation exercise, focusing on the period of 2020 onwards.

Note that the new model is not able to capture the trends in the data up

until now, in constrast to the model introduced in Section 2. This suggests

that today’s context is still not characterized by a state where robots replace

high-skilled labor. Nevertheless, as we expect advancements in technology

development and automation adoption, it seems reasonable to investigate

such a possible future scenario.

Figures 10 and 11 show the dynamics for the baseline model (blue lines)

17Notice that the production function in (36) implies that labor and automation are
not, nevertheless, strictly perfect substitutes. Therefore, as shown in the appendix, wages
wL,t and wH,t, are independent of At (instead of falling with At). In this context, au-
tomation induces a fall in the labor share in the production sector towards zero, but only
asymptotically, as At grows relative to LY,t without bounds.

18The extreme specification for the aggregate production function in (36) implies de-
creasing returns to scale. The factor income distribution problem is well defined if, say,
we also consider a fixed overhead in (36), measured in terms of final output and increasing
with At and Lt (because Yt grows with At and Lt in the long run). In that case, in each
period t, the marginal cost function corresponding to (36) is increasing in the quantity of
output, while the average cost function is U-shaped. This implies that there is an optimal
scale of production in the final-good sector, where the average cost is minimized. At this
scale and with factors priced at their marginal products, total factor income will equal
output, Yt, net of the fixed overhead.
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versus the model with the modified production function (black dashed lines)

as of 2020. We use the same calibration as in Table 1, except for δ, ε and φ,

which we change for the values used in the shock exercises in Section 3.2 in

both models, and α and (the new parameter) σ, for the model with full-labor

automation, so that α = 0.65 and σ = 0.25. The results show that as high-

skilled labor is replaced by automation, the graduate share flattens, triggered

by the unresponsiveness of high-skilled wage to the dynamics of At. In fact,

the high-skilled wage decreases due to the rise of high-skilled labor in the

context of a positive birth rate. Since a similar dynamics occurs as regards

the low-skilled wage, the skill premium is almost unchanged in the model

with full-labor automation, in contrast with the steep increase in the baseline

model. Likewise, the R&D share also flattens. In addition, the TFP growth

rate exhibits a smooth slowdown vis-à-vis the baseline model; however, this

is not extended to the GDP growth rate since the more favorable behavior

of the total birth rate (as explained below) offsets the behavior of the TFP

growth rate. Finally, the stock of robots exhibits a slower upward trend than

that of the baseline scenario. Under full-labor automation, the demand for

robots is not boosted by the high-skilled labor in the final goods sector since

this type of labor is no longer complementary to robots.

Regarding the demographic dynamics, the decreasing trend exhibited by

low- and high-skilled wages results in birth rates with a soft but opposite

behavior to that of the baseline model: the high-skilled birth rate (slightly)

increases, whereas the low-skilled birth rate (slightly) decreases under the

model with full-labor automation. In turn, these imply a different behavior

of the total birth rate, here characterized by a nearly constant trend, resulting

in the flattening of the old-age dependency ratio.
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Figure 10: Dynamics of technological and production variables given initial condi-
tions at 2020. Blue lines represent the baseline model and black dashed lines the
simulation results from the model with full-labor automation.
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Figure 11: Dynamics of demographic variables given initial conditions at 2020.
Blue lines represent the baseline model and black dashed lines the simulation
results from the model with full-labor automation.

To sum up, the scenario of full-labor automation in production presented

in this section seems to constraint the dynamics of the baseline model. In

particular, this occurs for the future dynamics (after 2020) of the skill pre-

mium, the stock of robots, and the TFP growth rate. But it also weakens

the interaction between technology and demography exhibited in the baseline

model, since the benefits of the complementarity between high-skilled labor

and robots no longer accrue, in spite of the context of potential demographic

growth, and hence, of growth of the high-skilled labor.

5 Conclusion

Recent studies have found that population ageing and automation adop-

tion are linked since an ageing workforce can incentivize firms to become more

technological dependent (Acemoglu & Restrepo, 2021; Irmen, 2020; Basso &
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Jimeno, 2021; Zhang et al., 2021; Stähler, 2021). Our paper extends this lit-

erature by focusing on the interaction between automation and demography

and the effects of different drivers of ageing, i.e., a low birth rate or high life

expectancy. With this in mind, we built an R&D-based model extended to

include automation in the production function, as well as endogenous edu-

cation and a demographic structure in the household sector by means of the

introduction of fertility choice and a survival probability from young to old

age.

Our model reveals consistent dynamics with the US trends from 1970 to

2019. Specifically, on the demographic side of the model, we can combine the

growth of real wages over time, and the heterogeneous behavior of the birth

rate across skill groups — a dynamics consistent with recent data regarding

the behaviour of low- and high-skilled birth rates.

To explore the mechanisms underlying our model, we run a number of

exercises considering one-off shocks to key technological and demographic

parameters. Our model reveals that an increase in the R&D labor efficiency

– which increases automation intensity – induces a temporary boost to TFP

and GDP growth rates and to the graduate share and a permanent (long-

run) increase in the skill premium. Yet, it has a temporary negative effect

on the total birth rate, increasing the old-age dependency ratio.

Concerning the impact of demography on robot adoption, we show that,

in the short and medium run, an increase in population ageing, either by

an increase in the survival probability or by a decrease in the preferences to

have children, has a positive effect on the dynamics of the stock of robots.

Nevertheless, in the long run, robot adoption accelerates with the increase

in the survival probability, whereas it slows down with the decrease in the

preference for having children. This result can explain the differences in the

rate of robot adoption faced by countries with severe population ageing. For

instance, China is one of the countries with the most aged population; yet,

it is not one of the top countries with higher robot density – the number of

robots per 10.000 workers in an industry International Federation of Robots

(2021). Our model provides a possible explanation for this since China’s birth

rates are meager. Certainly, longevity has also contributed to worsening its
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ageing problem; however, China’s life expectancy at birth still remains below

that of countries such as the US (World Bank, 2019a) and, simultaneously,

China’s one-child policy has been implemented since the 70s, being revised

only in 2016 to two children, and recently, allowing as many as three children.

Furthermore, an increase in the survival probability positively impacts

the TFP and GDP growth rates in the short and medium run, whereas

these variables face a permanently lower level in the long run. The graduate

share faces a temporary acceleration, while the skill premium permanently

accelerates. The response of these variables to a decrease in the preferences to

have children is similar; nevertheless, the skill premium displays an opposite

permanent effect.

Finally, we extend our analysis to include a full-labor automation sce-

nario. Taking as a reference the benchmark model, where machines can only

replace low-skilled labor, we find that automation intensity slows down when

robots can also substitute high-skilled labor in production. The key factor

is that, in spite of a growing high-skilled labor (reflecting the households’

fertility and education choices), the latter no longer stimulates the demand

for robots under full-labor automation. On the other hand, since, in this

case, wages of both types of labor remain relatively flattened because they

do not respond directly to automation, the birth rates have also a smoother

dynamics, which leads to a less severe behavior of the old-age dependency

ratio. As an add-on, this version of our model also helps make it clear, in ret-

rospective, the relevance of the complementarity between high-skilled labor

and robots for the study of the rich interplay between population dynamics,

human capital and technology observed in the last decades.

Although our full-labor automation exercise constrains the dynamics ex-

hibited in the baseline model, this result may be overturned, namely for the

stock of robots and the TFP growth rate, if we included automation in the

R&D sector in the context of advanced AI (as in, e.g., Basso & Jimeno,

2021). The performance of the full-labor automation model relative to the

baseline model would also be overturned in case the high-skilled population

was expected to stagnate in the future (which would require a → amin and

null birth rates in the model) say as the consequence of (further) shocks to
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the households’ preferences for children or the (net) cost of childbearing.
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Appendix

We use now a different final-good production function so that both low-

and high-skilled labor can be replaced by robots. Aggregate product is pro-

duced according to the function

Yt = (LσH,Y,tL
1−σ
L,t )1−α +

At∑

i=1

xαi,t, (37)

Maximizing the profits of this sector, we reach the following factor prices

wH,Y,t = σ(1− α)

(
LσH,Y,tL

1−σ
L,t

)(1−α)

LH,Y,t
, (38)

wL,t = (1− σ)(1− α)

(
LσH,Y,tL

1−σ
L,t

)(1−α)

LL,t
, (39)

pi,t = αxα−1i,t . (40)

The R&D and machine-producing sector are still characterized as in the

main text. However, the latter faces now a different demand by the final-

good sector given by equation (40). Given this, a monopolistic firm’s profit

is

πi,t ≡ πt = α(1− α)xαt (41)

The demand for robots xt is now given by:

xi,t ≡ xt =

(
α2

Rt

) 1
1−α

. (42)

Aggregating, the final-good production function is given by Yt = L1−α
Y,t +

Atx
α
t . Consumption and capital dynamics are still the same as in the main

text.

We face now a new implicit equation to obtain LH,A,t and LH,Y,t.

G(·) ≡ αδ

σ
Aγt (LH,t−LH,A,t)Lλ−1H,A,t(ktLt)

α−
(
LH,t−LH,A,t

)σ(1−α)(
Lt−LH,t

)(1−σ)(1−α)
= 0

(43)
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