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Abstract In a single item dynamic lot-sizing problem, we are given a time
horizon and demand for a single item in every time period. The problem seeks
a solution that determines how much to produce and carry at each time period,
so that we will incur the least amount of production and inventory cost. When
the remanufacturing option is included, the input comprises of number of re-
turned products at each time period that can be potentially remanufactured
to satisfy the demands, where remanufacturing and inventory costs are appli-
cable. For this problem, we first show that it cannot have a fully polynomial
time approximation scheme (FPTAS). We then provide a pseudo-polynomial
algorithm to solve the problem and show how this algorithm can be adapted
to solve it in polynomial time, when we make certain realistic assumptions on
the cost structure.

Keywords Lot-sizing; Remanufacturing; Complexity; Polynomial Algo-
rithms
1 Introduction
The classical lot-sizing problem is defined over a finite planning horizon with
discrete time periods. The demand for a single item in each time period is
provided as an input. The demand could be satisfied by either manufacturing
the item or through the inventory carried from previous period. There are no
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restrictions on how much we can manufacture in a given period. Items pro-
duced in excess of demand are carried over to the next period in the inventory.
The objective is to determine the least cost production plan that satisfies the
demands at every period. With the remanufacturing option, the demands can
be satisfied either by manufacturing new items or remanufacturing returned
items. The returns at every period are provided as an input to the problem.
The problem consists of separate inventory costs for carrying remanufactured
items and manufactured items (sometimes referred to as serviceable inven-
tory), and there is also a cost incurred for manufacturing or remanufacturing.
Remanufacturing is the process of recovering used products by repairing and
replacing worn out components so that a product is created at the same qual-
ity level as a newly manufactured product. This saves tonnes of landfill every
year by providing an environmentally friendlier alternative to classical manu-
facturing. It also offers industries the potential to significantly save money by
exploiting used product inventories and reusing many precious raw materials
that are becoming increasingly scarcer. With this motivation, we study the
single item production planning problem over a finite horizon with the option
of remanufacturing.

The classical lot-sizing problem was introduced in [16] by Wagner and
Whitin, where the manufacturing has an unrestricted capacity. They provided
a dynamic program that can solve this problem in polynomial time. Various
variants of it have been thoroughly studied over the last 6 decades, see [3] for a
recent review. Later, the capacitated version was introduced and the problem
was shown to be NP-hard, see [5]. A dynamic program was provided in [4]
which runs in polynomial time for unary encoding. A fully polynomial time
approximation scheme (FPTAS) was provided in [8]. There are a number of
variations to the classical lot sizing problem (see for instance [1,10]). The most
pertinent variation to this study with remanufacturing option was first studied
in [7] and proved as NP-hard in [13]. A dynamic program with polynomial
running time was provided for a special case of when the cost involved are
time invariant and there is a joint set-up cost involved for both manufacturing
and remanufacturing [12]. A polynomial time algorithm was provided when
all costs are linear by solving it as a flow problem [7]. Since then, very little
progress has been made for polynomial special cases. The general variations
of the problem have been shown to be NP-hard [11]. In addition several tight
formulations and their comparisons based on their lower bounds were provided
in [11]. In [9], the authors exploit the optimality structure to decompose the
problem into polynomially solveable subproblems. A heuristic procedure was
then provided, where a polynomial subset of these subproblems were then
chosen and solved.
1.1 Organisation
We first show in section 2 that the general case of this problem cannot have
an FPTAS unless P=NP. We refer the reader to [6] for concepts about NP-
hardness and [15] for concepts about FPTAS. We then provide a straightfor-
ward dynamic program for the general case that runs in pseudopolynomial
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time in section 3. We use this dynamic program as an ingredient to design
an algorithm that runs in polynomial time to solve a special case, where the
inventory cost of the returned items is at least as much as the inventory cost
of the manufactured items. In addition, we assume that the concave costs in-
volved in manufacturing has a fixed cost and variable cost component. We also
assume that the costs are time invariant.

In the single item economic lot-sizing problem with remanufacturing op-
tion (ELSR), we are given a time horizon T . Let [T ] := {1, . . . , T}. For each
time period t ∈ [T ], we are given a demand Dt, and the amount of returned
products Rt that is available for remanufacturing. W.l.o.g., we assume that
manufacturing and remanufacturing can be both completed for an item in a
single period. We also define the following cost functions for each time period
t ∈ [T ]:
1. manufacturing cost fmt : R≥0 → R≥0, for all t = 1, . . . , T ,
2. remanufacturing cost frt : R≥0 → R≥0, for all t = 1, . . . , T
3. cost of holding manufactured items (we will refer to this a serviceable

inventory items) hmt : R≥0 → R≥0, for all t = 1, . . . , T and
4. cost of holding returned items (we will refer to this a return inventory

items) hrt : R≥0 → R≥0, for all t = 1, . . . , T .
We assume that costs are time dependent. Our main results in section 4

requires that that the costs are time invariant. Both inventory costs are lin-
ear. The concave cost structure associated with remanufacturing and man-
ufacturing involves in a fixed cost and linear variable cost component , i.e.,
f it (x) = f it + litx, when x > 0 and 0 otherwise, for i = {r,m}. frt , fmt (lrt , lmt )
are the fixed costs (linear variable costs) incurred in period t for remanufac-
turing and manufacturing respectively. We slightly abuse the notation here to
denote both the fixed cost component and the function by the same notation,
but this is easy to distinguish from the context. In each time period, we have
the option to remanufacture the returned item, manufacture the item new,
or use serviceable inventory from previous period to satisfy the demand. The
problem requires a production plan that details the amount of products to
be manufactured xt, remanufactured yt, the returned items carried in inven-
tory pt, and serviceable items carried in the inventory qt, for each time period
t = 1, . . . , T such that the demand is met in each time period and we minimize
the total cost incurred. Excess returns from the production plan at the end of
the planning period will just be disposed at no extra cost. We now give the
formulation for this problem.
– yt(xt) : Amount of remanufactured (manufactured) item in time period t.
– pt(qt): Amount of return (serviceable) inventory carried at time t
– urt (umt ): Binary variable indicating whether we remanufactured (manufac-

tured) in period j
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Fig. 1: Reduction from Partition problem

min
T∑
t=1

(frt urt + lrt yt + hrtpt + fmt u
m
t + lmt xt + hmt qt) (ELSR)

Rt + pt−1 = yt + pt, ∀t ∈ [T ]
qt−1 + yt + xt = Dt + qt, ∀t ∈ [T ]

yt ≤Murt , ∀t ∈ [T ]
xt ≤Mumt , ∀t ∈ [T ]

x,y ∈ RT≥0

p,q ∈ RT≥0

u ∈ {0, 1}T

2 Complexity
The problem is known to be NP-hard in general [13,11]. We extend the reduc-
tion provided in [13] to show the following theorem. Note that the following
proof had appeared in an unpublished work of the author [14] using a reduc-
tion from the partition problem. We repeat the proof here in this work. The
problem could be viewed as non-time invariant or expected to have a zero
outgoing return inventory at the end of the planning period.

Theorem 1 ELSR does not have FPTAS unless P=NP.

Proof. We will show this through a reduction from the partition problem,
wherein we are given n integer a1, a2, . . . , an. We want to determine if there
exist a subset S ⊂ {1, ...n} of integers such that

∑
i∈S ai = A. In our reduction

(see figure 1), we first take the time horizon T = n+1 and the demand for each
time period i = 1, . . . , T − 1 = n as ai. The demand is zero for the last time
period. We incur a fixed cost of 1 for both manufacturing and remanufacturing.
The serviceable inventory cost is n for all time periods and returned inventory
cost is 0 for the first n periods and it is n for the last period. The amount
of returns in period 1 is R1 = A and there are no returns for all other time
periods, Ri = 0, i = 2, . . . , n+1. If there is a solution to the partition problem,
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i.e, YES instance, then the optimal solution to ELSR is less than n. We will
use the returns A to satisfy the set of items adding up to A and the remaining
items (which also add up to A) are satisfied by remanufacturing. Each period
resulting in manufacturing or remanufacturing cost (but not both). If the
partition problem is a no instance, i.e., then there are no subsets adding up
to A, then we either need to manufacture and remanufacture at least in 1
period in addition to either manufacturing and remanufacturing in every other
period or we would incur a serviceable inventory cost or the return inventory
cost in the last period, resulting in a cost of at least n + 1. This also rules
out an FPTAS for the problem, since we can choose an ε < 1

n , say ε = 1
2n .

Now, an algorithm that runs in O(f(n, 1
ε )), with f(n, 1

ε ) = f(n, 2n) being a
polynomial function in n, provides an (1+ε)-approximation for the ELSR that
can distinguish YES and NO instances of the partition problem in polynomial
time. We can transform a PARTITION instance into our ELSR instance. Then
we can apply this approximation algorithm. If the output of this algorithm is
at most n, then we can conclude the PARTITION instance as YES instance,
since the approximation guarantee imply its solution has an objective value at
most n(1 + ε) < n(1 + 1

n ) = n+ 1 and we can only have integer solutions. Else
we can conclude that the PARTITION instance is a NO instance.

3 Dynamic program for the general case
We now provide a dynamic program that runs in pseudopolynomial time to
solve the general case exactly. This is an extension of Wagner and Whitin’s
solution that incorporates the remanfacturing option, and we present it here
as we will be needing it as an ingredient of our special case. We define the fol-
lowing function Wt(p, q) as the minimum cost of obtaining a return inventory
level of p and a serviceable inventory level of q at the end of period t, such that
all demands are met for the periods i = 0, . . . , t either through manufacturing
new items or remanufacturing returns. We define the notation Di,j :=

∑j
t=iDt

(corr. Ri,j :=
∑j
t=iRt) to denote the cumulative demands (corr. returns) be-

tween the periods i and j, for all 0 ≤ i ≤ j ≤ T . We will define the inventory
level sets Pt := {0, . . . ,R1,t} and Qt := {0, . . . ,max{R1,t,Dt,T }}. We will use
the same notation but with a reduced state space for our special case. We
will now do a forward recursion. We can now compute the value for W1(p, q),
p∈ P1, q∈ Q1. For a specific value of p and q, there is exactly one way of ob-
taining the solution, so we can compute W1(p, q) for all possible values of p
and q. In order to this, in our formulation ELSR, we need to calculate xr1 and
xm1 by solving the set of equations p+ xr1 = R1 and D1 + q = xr1 + xm1 . Then
W1(p, q) = fr1 (xr1) + hr1(p) + fm1 (xm1 ) + hm1 (q). For infeasible solutions with
xm1 < 0 or xm1 < 0 , we set W1(p, q) =∞. Then, the recursive function is:

Wt(p, q) = min
p̃∈Pt−1
q̃∈Qt−1

[Wt−1(p̃, q̃) + frt (p̃+Rt − p)+ (1)

fmt (Dt + q − q̃ − (p̃+Rt − p)) + hrt (p) + hmt (q))] (2)
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The size of the state space of the problem is T · D1,T ·R1,T , making the above
algorithm pseudopolynomial in running time.

Theorem 2 Wt(p, q) is the optimal value of the ELSR problem for periods
1, . . . , t, when we need p (q) as the return (manufactured) inventory level at
the end of time period t

The proof is omitted as it is a straightforward extension from Wagner and
Whitin [16] for the dynamic lot-sizing problem. As a consequence of Theo-
rem 2, we get the following result.
Corollary 3. maxp,qWT (p, q) is the optimal solution to ELSR.
4 Dynamic program for the special case: Return inventory cost is
higher than serviceable inventory cost

We now investigate the special case where hr(p) ≥ hm(p), for all p ∈ R≥0.
Generally, the serviceable inventory costs tend to be higher as the value of
the products carried in the serviceable inventory is higher. In the special case,
for instance, where the value of the returned products depreciate faster than a
newly manufactured product or when there is no difference between a returned
or a manufactured product, the problem has its applications. Note that we
also omitted the time index as we are assuming the costs are time invariant.
In the sequel, we show that, for this special cost structure, the sets Qt and
Pt are polynomially bounded. This in turn means that the the computation
of Wt(p, q) is polynomially bounded. For the sake of our analysis, we will
introduce a special period, t∗, which is the last time period of remanufacturing
in an optimal solution. We will present our analysis by separately bounding the
state space, Qt and Pt, for the time periods before and after the time period
t∗. It is used purely for the purposes of the proof. Let (p∗,q∗) be the return
and serviceable inventory levels in the optimal solution where we assumed
t∗ and `∗ to be known in the analysis. We define the following notation for
compactness: (a− b)+ := max{a− b, 0}
4.1 Bounding state space of P and Q

Lemma 1 For the optimal solution p∗,q∗, let R̂t := p∗t−1 +Rt be the returned
goods available at some time period t < t∗, then there is an optimal solution
(by possibly re-writing the solution p∗,q∗ from time t and onwards) in which
the amount of remanufactured items in time t will only be from the set {0, R̂t}.
If such a choice of return inventory is not possible, then we can create a new
optimal solution with t being the last remanufactured period.

Proof. Suppose in (p∗,q∗), we produce something not from this set {0, R̂t}.
Hence, some intermediate return stock of 0 < a < R̂t is carried, which also
means that we are remanufacturing at time t in the optimal solution. Since
t < t∗, there exists a time period after t in the optimal solution where we re-
manufacture. Let the t̃ be the first time period after t, when we remanufacture
in the optimal solution. We are also carrying a non-zero return inventory until
this time period. If we remanufacture at least a in time t̃, then we could have
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Fig. 2: A rerouting the returns remanufactured at t̃ to time period t

remanufactured this a in time t and carried a units of manufactured inventory
until time t̃ with no additional cost, since return inventory cost is higher than
manufactured inventory cost. If we produced less than a in time t̃, say ã, then
we could have produced ã in time t and produced nothing in time t̃ and con-
tinue with our argument (with a− ã being the new a and the next time period
of remanufacturing being the new t̃). If t̃ = t∗ and ã < a, then we would have
new optimal solution with t being the last time period of remanufacturing.

An alternative way of interpreting the above lemma is that whenever we
choose to remanufacture at time t, we remanufacture all return inventory avail-
able or nothing. We can reroute the returns that were remanufactured at time
t̃ to time t (see figure 2) and get a new production plan with better or same
cost. The above lemma gives us the following lemma and corollary.

Corollary 4. For each time period t < t∗, there exists an optimal solution for
ELSR where the possible inventory level of the returned products right after
period t takes a value only from the set {0,Ri,t}, for all i = 1, . . . , t, where t∗
is the last time period of remanufacturing in that optimal solution.

Proof. The proof can be obtained through induction by invoking Lemma 1
and the induction hypothesis.

Corollary 5. For each t < t∗, the total number of return inventory levels to
be kept is less than t2.

We need the following intermediate lemmas before we give the main proof.

Lemma 2 There exists an optimal solution in which between two successive
manufacturing periods (say t and t+j), the serviceable inventory falls to zero,
i.e., the outgoing serviceable inventory is zero for at least one period between
t and t+ j − 1.

Proof. Let x be the smallest inventory level between the periods t and t + j
and y be the amount of manufactured items in time t. We now reduce the
inventory level of all time periods between t and t+j by min(x, y) and decrease
the manufactured items in time t by min(x, y) and increase the manufactured
item in time t+ j by min(x, y). If we reduced the manufactured items in t to
zero, then we repeat the argument with t + j and the period before t when
we manufactured. Note that this procedure results in a new solution with a
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(a) Case: t̂ ≤ tm ≤ t (manufacturing hap-
pens before time t)
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tm

(b) Case: t ≤ tm ≤ t̃ (either manufactur-
ing happens after t or does not happen)

Fig. 3: Bounding serviceable inventory levels for period t < t∗

better cost and with at least one time period with zero serviceable inventory
between two successive manufacturing periods.

Definition 1 We call a continuous interval of periods t̂, . . . , t̃, as non-zero
serviceable inventory interval (NSI), if the following conditions are true

1. Incoming serviceable inventory of t̂ is zero
2. Outgoing serviceable inventory of t̃ is zero
3. Finally, we must have non-zero serviceable inventory at all periods t̂, t̂ +

1, . . . , t̃ − 1. By this, we mean that the serviceable inventory never drops
to zero within a NSI.

Lemma 3 There exists an optimal solution, where the serviceable inventory
level at time period t in a given NSI, [t̂, t̃], will be in the set

{0,Dt+1,t̃ +Rj+1,k,Ri,j −Dt̂,t}

where j ∈ [t̂, t], k ∈ [t, t̃] and i ∈ [1, t̂].

Proof. Let us consider the NSI [t̂, t̃], in which t is present. From lemma 2,
if manufacturing took place at some time tm, then it will be only period of
manufacturing in its NSI (see figure 3). We define the following time periods

1. let i− 1 be last period before t̂ when remanufacturing takes place
2. let j ≥ t̂ be the last period before t when remanufacturing takes place
3. let t ≤ k ≤ t̃ be the last period before t̃, when remanufacturing take place

Case t̂ ≤ tm ≤ t: The serviceable inventory level at time t is x +Ri,j − Dt̂,t,
where x is the amount manufactured in time tm. This is true because all re-
turn items between period i and j gets remanufactured before t (and those
are the only items that get remanufactured from the definition of i and j -
see figure 3a) and all demands between the periods Dt̂,t gets deducted from
the total amount manufactured and remanufactured. Now x takes the value
Dt̂,t̃−Ri,k as all returns between the periods i and k gets remanufactured and
all remaining demand between the periods in NSI has to then come from the
only manufacturing period in the NSI.
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Case t < tm ≤ t̃ or when no manufacturing happens in the NSI : The service-
able inventory level at t will be Ri,j − Dt̂,t. This follows similar reasoning to
the previous case but this time without x (see figure 3b).

Lemma 4 For each t, the number of serviceable inventory levels kept is at
most t2(T − t) + t3.

Proof. We will first work out the number of distinct possible values that
Dt+1,t̃ + Rj+1,k can take. t̂ is not explicitly appearing in the expression. It
indirectly determines the possible values that j can take. t̂ values can be be-
tween 1 and t. This would imply for a given t, j = 1 to t, k = t to t̃ and t̃ = t
to T . When t̃ = T − r, there are t possible values for j and T − r − t possible
values for k. This needs to be summed up for r = 1 to t possible values of t̃.
Thus the number of distinct possible values that Dt+1,t̃ +Rj+1,k can take is
at most

∑t
r=1 t(T − r − t) ≤ t2(T − t).

By a similar reasoning, with i = 1 to t̂ and t̂ = 1 to t, the number of distinct
values that Ri,j −Dt̂,t can take are

∑t
r=1(t2 − r)r ≤ t3.

i t̂ j t∗ t

t̂ j t∗ t̃

tm

(a) Manufacturing happens in NSI.
Return inventory at t∗ = 0

i t̂ j t∗ t

t̂ j t∗ t̃

yt∗

xt∗

(b) No manufacturing in the NSI (xt∗ =
Ri,j −Dt̂,t∗−1, yt∗ = Dt̂,t̃ −Ri,j )

Fig. 4: Return inventory at time t ≥ t∗

Lemma 5 Given the NSI [t̂, t̃] that contains t∗, the return inventory level in
the periods t ≥ t∗ will be in the set

{0,Rt∗+1,t,Ri,t −Dt̂,t̃}

where i ∈ [1, t̂].

Proof. We will divide the analysis into 2 cases:
Manufacturing takes place in t∗’s NSI: In this case the return inventory level at
t∗ is then 0. This is because, we have an uncapacitated concave cost network
flow problem whose optimal solution is an extreme flow. Every flow can be
decomposed into paths and cycles and extreme flows do not contain a cycle
(see [2]). If manufacturing happens and we have return inventory level at t∗
non-zero, we will end up inducing a cycle in the flow based solution. As this
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cannot happen, we can rule out the possibility of returns at t∗ being non-
zero for this case. This would imply that the return inventory level at t will
be Rt∗+1,t.
No manufacturing happens in t∗’s NSI: Let

– t̂ and t̃ be the starting and ending time period of the NSI in which t∗ is
present

– i− 1 be the last period before t̂, when remanufacturing happened.
– j be the last period before t∗, when remanufacturing happened.

The incoming serviceable inventory level at t∗ is then Ri,j −Dt̂,t∗−1 obtained
through remanufacturing the returns between periods i and j that are used to
satisfy demands between t̂ and t∗−1 (see figure 4b). This incoming serviceable
inventory level along with the remanufactured returns at time period t∗ (say
yt∗) must satisfy the demands between t∗ and t̃. In other words yt∗ +Ri,j −
Dt̂,t∗−1 = Dt∗,t̃. In this case, the return inventory level at t will be

Rt∗+1,t + (Rj+1,t∗ − yt∗) = Rt∗+1,t + (Rj+1,t∗ − (Dt∗,t̃ − (Ri,j −Dt̂,t∗−1)))
= Ri,t −Dt̂,t̃

Corollary 6. For t ≥ t∗, the number of return inventory levels is bounded by
O(T 3).

From corollary 5 and lemma 4, we have the following lemma.

Lemma 6 For t ≤ t∗, the Pt ×Qt is bounded by O(T 5).

From corollaries 5 and 6, we have the following lemma.

Lemma 7 For t ≥ t∗, the Pt ×Qt is bounded by O(T 5).

From (2), we have that each state space evaluation taking O(T 5). This can
be substantially reduced as we see in the subsequent lemmas.

Lemma 8 At time period t and for each p ∈ Pt and q ∈ Qt, we need to
consider at most O(T ) (p̃, q̃) ∈ Pt−1 × Qt−1 to consider in the evaluation of
Wt(p, q) in (2).

Proof. When t− 1 and t are in a different NSI, the only q̃ we need to consider
is 0 from the definition of a NSI. If remanufacturing happens at t (i.e. p = 0
from lemma 1), then there are O(T ) possibilities for p̃ depending on when
remanufacturing happened before t− 1. If remanufacturing did not happen at
t, we would then consider a fixed return value for p, say Ri,t, corresponding
to a period i, when remanufacturing happened before t. In this case, there is
unique value for p̃, which is either 0 when i = t−1 or Ri,t−1 when i < t−1. We
will now discuss the case when t− 1 is in the same NSI as t. For a given NSI
[t̂, t̃], at t we have q ∈ {0, Dt+1,t̃+Rj+1,k,Ri,j−Dt̂,t}, for all j ∈ [t̂, t], k ∈ [t, t̃]
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and i ∈ [1, t̂]. At t − 1 we have q̃ ∈ {0, Dt,t̃ + Rj̄+1,k̄,Rī,j̄ − Dt̂,t} for all
j̄ ∈ [t̂, t − 1], k̄ ∈ [t − 1, t̃] and ī ∈ [1, t̂]. However, when we consider a specific
value for q, we observe the following definitions for the periods i and k (See
(1) and (3) in proof of lemma 3):

1. t ≤ k ≤ t̃ is the last period before t̃ when remanufacturing takes place
2. i− 1 is the last period before t̂ when remaufacturing takes place

From the first (resp. second) observation, we have that k̄ (resp. ī) coincides
with k (resp. i) as these definitions have to be true with respect to t−1 as well
for a given NSI. So, we only need to consider O(T ) values for q̃ corresponding
to j̄ ∈ [t̂, t−1], when we consider a given value of q. By definition, j is the last
period before t, when remanufacturing happened. So p takes a value in the set
{0,Rj,t}. The case p = 0 corresponds to remanufacturing happening in p. In
this case, there is a unique value for p̃, which is Rj̄,t−1 corresponding to the
same value of j̄ ∈ [t̂, t− 1] that we used for q̃. When we consider p = Rj,t we
still have a unique value for p̃: either p̃ = 0 when j = t− 1 or p̃ = Rj,t−1 when
j < t− 1.

Lemma 6, 7 and 8 gives us the following Theorem.

Theorem 7 The overall complexity of the algorithm is O(T 7).

5 Conclusion and open problems
In this work, we studied the ELSR problem. We first provided a hardness
proof that rules out FPTAS for this problem in the general case. We then
provided a dynamic program with a pseudopolynomial running time to solve
the general version of the problem. We later showed how this can be used to
design a polynomial running time algorithm, when we make some assumptions
on the cost structure. A number of open problems still remain to be solved.
Although we have ruled out a possibility of FPTAS for the general case, we
have no proofs for APX-hardness (see [15]) or lack of FPTAS for the time
invariant case. The polynomial time algorithm presented only works for fixed
cost structure. For general concave costs, we do not yet know the complexity.
The algorithm itself is not practical for large instances but knowing that it is
tractable would give incentives to look for linear programming representations
for these problems.
References
1. S. Agrali. A dynamic uncapacitated lot-sizing problem with co-production. Optimiza-

tion Letters, 6(6):1051–1061, 2012.
2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice hall, 1993.
3. K. Akartunalı and A. Miller. A computational analysis of lower bounds for big bucket

production planning problems. Comput. Optim. Appl., 53(3):729–753, 2012.
4. M. Florian and M. Klein. Deterministic production planning with concave costs and

capacity constraints. Management Science, 18:12–20, 1971.
5. M. Florian, J. Lenstra, and H. Rinnooy Kan. Deterministic production planning: Algo-

rithms and complexity. Manag. Sci., 26(7):669–679, 1980.



12 A. Arulselvan et al.

6. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

7. B. Golany, J. Yang, and G. Yu. Economic lot-sizing with remanufacturing options. IIE
Transactions, 33(11):995–1003, 2001.

8. C. V. Hoesel and A. Wagelmans. Fully polynomial approximation schemes for single-
item capacitated economic lot-sizing problems. Mathematics of Operations Research,
26:339–357, 2001.

9. O. A. Kilic and W. van den Heuvel. Economic lot sizing with remanufacturing: Struc-
tural properties and polynomial-time heuristics. IISE Transactions, 51(12), 2019.

10. M. Önal and E. Albey. Economic lot sizing problem with inventory dependent demand.
Optimization Letters, 1(1):1–20, 2020.

11. M. Retel Helmrich, R. Jans, W. van den Heuvel, and A. Wagelmans. Economic lot-
sizing with remanufacturing: Complexity and efficient formulations. IIE Transactions,
46:67–86, 2014.

12. R. Teunter, Z. Bayındır, and W. van den Heuvel. Dynamic lot sizing with product re-
turns and remanufacturing. International Journal of Production Research, 44(20):4377–
4400, 2006.

13. W. van den Heuvel. On the complexity of the economic lot-sizing problem with re-
manufacturing options. Econometric Institute Research Papers EI 2004-46, Erasmus
University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute,
2004.

14. W. van den Heuvel. The Economic Lot-Sizing Problem: New Results and Extensions.
PhD thesis, Erasmus Research Institute of Management, Rotterdam, 2006. 168 pages.

15. V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York,
NY, USA, 2001.

16. H. Wagner and T. Whitin. Dynamic version of the economic lot size model. Management
Science, 5:89–96, 1958.


	Introduction
	Complexity
	Dynamic program for the general case
	Dynamic program for the special case: Return inventory cost is higher than serviceable inventory cost
	Conclusion and open problems

