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Abstract

We assess U.S. monetary policy across time and frequencies in the framework of the Taylor

Rule (TR). With that purpose, we derive a multivariate generalization of the wavelet gain �

the partial wavelet gain � a new tool which allows us, for the �rst time, to estimate the TR

coe¢ cients in the time-frequency domain. By using this and other continuous wavelet tools,

we reach a number of results regarding the evolution of the TR coe¢ cients along time that

also have a frequency-domain nature � for example, the in�ation coe¢ cient has violated the

Taylor principle unevenly across frequencies, and the evidence of a modi�ed TR with a unit

slope on output since 2009 is also uneven along time and across frequencies.
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1 Introduction

This paper uses continuous wavelet tools to estimate the coe¢ cients of the Taylor Rule implicit in

U.S. monetary policy between 1965 and 2014. The simultaneous variation of coe¢ cients along time

and frequencies, and the thorough statistical analysis provided by our tools, allow for detecting

new stylized facts about the last �ve decades of U.S. monetary policy.

Taylor (1993) showed that the policy in 1986-92 was very well described by the simple para-

metric relation between the policy interest rate, the output gap and in�ation

FFRt = 2 + �t +
1

2
yt +

1

2
(�t � 2) ; (1)

in which FFR is the (e¤ective) federal funds rate, � is the in�ation rate over the previous four

quarters, y is the percent deviation of output from its potential and both the real equilibrium

interest rate and the in�ation target are assumed to equal 2 percent.

A �rst worth of the Taylor Rule (TR) is positive, and consists of its ability to parsimoniously

describe U.S. monetary policy. Indeed, subsequent empirical studies have shown that such broad

empirical success extends to periods before 1986 and after 1992, which is particularly noticeable

given that, as documented inter alia by Kahn (2012) and Taylor (2012), there were frequent

references to Taylor-type rules in the Federal Open Market Committee meetings since 1993 but

not before � when policy discussions and decisions were more discretionary and focused on �ne-

tuning real activity with no special focus on long-run price stability.

A second worth of the TR is normative, as it came to be considered a useful benchmark

for monetary policy, highly valuable to inform and aid policymakers� decisions, even if not to

be followed mechanically. In fact, being an approximation to the optimal control solution of

the monetary policy-maker�s problem, the TR has proved to be quasi-optimal and more robust

than a wide array of strictly optimal policy rules derived in speci�c macroeconomic models �

see e.g. Taylor and Williams (2010). Moreover, it has the advantage that its simplicity makes
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it very easy to communicate and understand. Consistently, monetary policy is systematically

modeled with a Taylor-type Rule in the New-Keynesian dynamic stochastic general equilibrium

models that are the current mainstream for monetary policy conduct and analysis. Recently, given

arguments that under the TR policy is more predictable, systematic, and thus e¤ective (Taylor,

2012), the suggestion by Taylor and Williams (2010) that it could become an accountability device

has received attention in policy circles, with a Bill introduced to the U.S. Congress then fueling

discussions in academic circles � see e.g. Bernanke (2015).1

To deal with the observation that, in spite of the overall very good �t of the interest rates

prescribed by the original TR, there are several episodes of systematic deviations between the FFR

and the implied TR rate, the literature has explored essentially three avenues. First, episodes of

substantial deviations have been formally identi�ed and described as eras of discretionary monetary

policy, as opposed to rules-based eras, with the latter associated with higher macroeconomic

stability � e.g. Taylor (2012) and Nikolsko-Rzhevskyy, Papell, and Prodan (2014). Second, the

original TR has been extended with several additional and re�ned explanatory variables � e.g.

Clarida, Galí and Gertler (2000), Sims (2013), Sack and Rigobon (2003), Lubik and Schorfheide

(2007), and Christensen and Nielsen (2009).

A third approach has allowed the coe¢ cients of the TR to vary along time. Following Clarida,

Galí and Gertler�s (2000) �nding that the U.S. interest rate policy has been more sensitive to

in�ation after 1979, the stability of the U.S. TR has been assessed with several time-series methods,

such as threshold models (Bunzel and Wenders, 2010), time-varying parameters models (Trecroci

and Vassalli, 2010), Markov-switching models (Assenmacher-Wesche, 2006), smooth-transition

models (Alcidi, Flamini and Fracasso, 2011), instrumental variables quantile regressions (Wolters,

2012), and Hamilton�s (2001) �exible approach to nonlinear inference (Kim, Osborn and Sensier,

2005). Time variation in the TR coe¢ cients � notably the increase in in�ation�s coe¢ cient �

has been associated with policy regime changes and, in turn, phenomena as the Great Moderation

(Canova, 2009) and the decline in in�ation persistence (Benati, 2008). Considering that the TR is

1H.R. 5018 (113th) Federal Reserve Accountability and Transparency Act of 2014, discussed in the House Finan-
cial Service Committee, according to which the FED should explain to the House any systematic deviations of the
policy interest rates from a reference policy interest rate that would correspond precisely to that implied by Taylor�s
(1993) Rule presented in (1). For details, see https://beta.congress.gov/113/bills/hr5018/BILLS-113hr5018ih.pdf
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an approximation to the optimal control solution of the policymaker�s maximization problem, its

functional form and coe¢ cients depend on the policymaker�s preferences, on the structure of the

economy, as well as on the information considered by both policymakers and the public. Hence,

the TR may change for many reasons, as the literature has thoroughly addressed in the recent

years � e.g. Favero and Rovelli (2003), Owyang and Ramey (2004), Dennis (2006), Surico (2007),

Dolado, Maria-Dolores and Naveira (2005), Alcidi, Flamini and Fracasso (2011), Tillmann (2011),

Hamilton, Pruitt and Borger (2011).

While the literature documents very thoroughly how TR coe¢ cients change along time, it does

not assess whether that variation has di¤erent intensity for di¤erent cyclical oscillations. There are,

however, ample reasons for the TR coe¢ cients to change di¤erently at distinct frequencies. First,

as the main focus of monetary policy is cyclical stabilization, one key concern of policymakers

should be to understand and control which speci�c cyclical oscillations they want to, can, and

do control at each period of time. For example, policymakers should care about the impact of

policy across cyclical frequencies because oscillations at di¤erent frequencies may have di¤erent

impacts on social welfare; or because controlling oscillations at some frequencies may imply a

trade-o¤ with larger variability at other frequencies (Yu, 2013); moreover, di¤erent circumstances

may recommend di¤erent choices regarding these frequency-domain trade-o¤s. Second, while it is

arguable that during most of the time policymakers react more strongly to persistent than to short-

lived �uctuations in the main macroeconomic variables, the relative importance of controlling low

versus medium and versus high frequency oscillations may change with circumstances; indeed,

the well-known discussion about which in�ation rate to consider in the TR � whether headline

in�ation or core in�ation, which features smaller high-frequency variation � is an example of

the di¢ culty in �nding a once and for all best indicator for policy, given the frequency-domain

trade-o¤s faced by the policymaker (see e.g. Mehra and Sawhney, 2010). Third, changes in the

monetary policy regime may be closely related with changes in the relative intensity of the policy

reaction at di¤erent frequencies; for example, a policymaker trying to conquer credibility may

have to react very strongly to transitory changes in in�ation, but once credibility is established,

he or she may increase the focus on �uctuations in in�ation of a more permanent nature.

Hence the motivation for this paper: to thoroughly describe the changes in the U.S. TR along
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time and across frequencies. We use continuous wavelet tools, with an approach consisting of a

sequential analysis of partial wavelet coherencies, phase-di¤erence diagrams and gains. The partial

coherencies and phase-diagrams determine, for each time and frequency, the signi�cance, sign and

synchronization (lags or leads) between the policy interest rate and each of the macroeconomic

variables in the TR, controlling for the other variable; the partial gains provide estimates of the

coe¢ cients associated to each macro variable in the TR, along time and across frequencies.

At the methodological level, our main contribution to the literature is to provide a multi-

variable generalization of the wavelet gain that allows for estimating multivariate functions in the

time-frequency domain. We also use the multiple coherency (see Aguiar-Conraria and Soares,

2014) jointly with the partial coherency (and partial phase-di¤erence) to re�ne the interpretation

of the estimates given by the partial gain.

Regarding the coe¢ cient on in�ation, we emphasize four �ndings. First, it has changed much

more markedly for cycles of intermediate duration than for longer cycles and shorter cycles likewise.

Second, rather than a change from a constant coe¢ cient below 1:0 before 1979 to a coe¢ cient above

1:0 after 1979, there has been a gradual decrease of the in�ation coe¢ cient until the mid-1970s,

followed by an increase after 1979 that is essentially completed at the start of the 1985-2003 rules-

based era, and is most marked at the core business cycle frequencies. Third, the Taylor principle

has been violated unevenly across frequencies, with the estimate of the in�ation slope below 1:0 for

longer the lower the corresponding frequencies. Fourth, since the mid-1980s, for cycles of period

above 4 years the coe¢ cient on in�ation in the TR is consistently above the baseline value and

full sample estimate of 1:5.

As regards the coe¢ cient on the output gap, we emphasize two main �ndings. First, the full

sample OLS estimate of 0:5 seems to be an artifact resulting from di¤erent coe¢ cients across

frequencies and along time. Second, the time-series evidence and policy-makers�statements point-

ing to a modi�ed TR with a slope of 1:0 on the output gap in the U.S. TR since 2009 is not

evenly explained across frequencies, as it is associated to stronger reactions of policy to output

at the short-end and long-end of cyclical oscillations, but not at the most standard business cycle

frequencies.

The paper proceeds as follows. In Section 2, we intuitively describe our methodology and in
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Section 3 we describe the data. In Section 4 we apply wavelet tools to the data and provide a

continuous time-frequency assessment of the U.S. TR. Section 5 concludes. In the appendix, we

provide a self contained summary of our methodology, with an emphasis on our main methodolog-

ical contribution: the partial wavelet gain that we use to estimate the coe¢ cients of the Taylor

Rule in the time-frequency domain.

2 Methodology

The continuous wavelet transform is an increasingly popular tool in econometric analysis. The

most common argument to justify its use is the possibility of tracing transitional changes across

time and frequencies � see Aguiar-Conraria and Soares (2014) for a review. So far, the analysis in

the time-frequency domain with the continuous wavelet transform has been mostly limited to the

use of the wavelet power spectrum, the wavelet coherency and the wavelet phase-di¤erence. Aguiar-

Conraria and Soares (2014) already extended these tools to allow for multivariate analyses. These

multivariate tools are su¢ cient to assess the strength of the relation between several variables,

but they are insu¢ cient to estimate the magnitude of the relation. Just like (partial) correlation

coe¢ cients do not provide the same information as the regression coe¢ cients.

Mandler and Scharnagl (2014) use the concept of the wavelet gain as a regression coe¢ cient

in the regression of y on x. In this paper, and, to our knowledge, for the �rst time, we will

estimate an equation relating more than two variables (just like a regression of y on x and z) in

the time-frequency domain. To do so, we generalize the concept of wavelet gain and de�ne the

partial wavelet gain, which can be interpreted as a regression coe¢ cient in the regression of y on

x after controlling for other variables. We will proceed in a non-conventional fashion and leave to

the appendix all the technical details and the mathematical derivation of the relevant formulas.

In the main text, we simply provide the formulas for the particular case of three variables and

a constructed example that will illustrate our claim that by estimating the partial gain one is

essentially estimating an equation in the time-frequency domain.
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2.1 Partial wavelet gain with three variables

We illustrate the use of the formulas derived in the appendix, in terms of bivariate coherencies,

for the case where we just have three series x1, x2 and x3. In this case, it can easily be shown (see

Aguiar-Conraria and Soares 2014) that the multiple wavelet coherency is given by:

R21(2 3) =
R212 +R213 � 2< (%12 %23 %13)

1�R223
; (2)

where %ij is the complex wavelet coherency and Rij the wavelet coherency between xi and xj; <

means that we are collecting the real part, and the upperbar is used to denote complex conjugation.

The complex partial wavelet coherency between x1, and x2; after controlling for x3; is given by:

%1 2:3 =
%12 � %13%23p

(1�R213)(1�R223)
: (3)

On the other hand, applying formula (A.13), it is easy to show that the partial wavelet gain G1 2:3

is given by:

G1 2:3 =
j%12 � %13%23j
(1�R223)

�1
�2
: (4)

Note that each of the above quantities is a function of time and frequency. In the case of the

last formula, for example, we have the partial gain between x1, x2 (after controlling for x3) for

di¤erent times and frequencies. Therefore, we do not have one number. We have a matrix, whose

information must be summarized for tractability.

2.2 Example: Partial gain, coherency and phase-di¤erence

We now give a constructed example illustrating the application the wavelet gain and partial wavelet

gain, proposed in this paper. Given the full control of the data generating processes, our example

makes it clear that the partial wavelet gain may be interpreted as a regression coe¢ cient in the

time-frequency domain. The example also highlights that, because the (partial) wavelet gain is

an absolute value, its interpretation must be associated with that of the wavelet (partial) phase-

di¤erence, which will tell us if the relation is positive or negative and will also tell us which variable
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is leading or lagging.

Figure 1 is a guide to interpret the (partial) phase-di¤erence, between the two series x and y

(controlling for the third variable): a partial phase-di¤erence with value zero indicates that the

time-series move together at the speci�ed frequencies; if the partial phase-di¤erence lies in the

interval (0; �
2
), then the series move in phase, but the time-series x leads y; if the partial phase-

di¤erence is in (��
2
; 0), then it is y that is leading; a partial phase-di¤erence of � indicates an

anti-phase relation; if the partial phase-di¤erence is in (�=2; �), then y is leading; time-series x is

leading if the partial phase-di¤erence lies in (��;��
2
).

Imagine that we have monthly data and that the data generating processes for X and Z are

given by

Xt = sin
�
2� t

3

�
+ sin

�
2� t

8

�
+ "x;t;

Zt = sin
�
2� t

9

�
+ "z;t;

while for Y is given by

Yt =

8><>: 2 sin
�
2� t+3=12

3

�
+ 1 sin

�
2� t�1

8

�
+ Zt + "y;t; for t � 100

2 sin
�
2� t+3=12

3

�
� 3 sin

�
2� t�1

8

�
+ Zt + "y;t; for t > 100

:

Suppose that we are interested in regressing Y against X in the time-frequency domain. What

should we expect?

Figure 1: Phase-di¤erence circle.

At frequencies that correspond to a period of 3 years, the estimated coe¢ cient should be 2
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throughout the sample, implying that the wavelet gain should be 2 also. The phase-di¤erence

should also indicate that Y slightly leads (by 3 months) X, meaning that the phase-di¤erence

between Y and X should be between 0 and �=2.

At the frequency corresponding to a 8 year period, the coe¢ cient should be +1 in the �rst half

of the sample and �3 in the second half. However, given that the wavelet gain is an absolute value,

it would yield an estimate of +3 for the coe¢ cient in the second half of the sample. To capture

the negative sign of the relation, one has to use the information given by the phase-di¤erence. In

the �rst half of the sample, at this frequency, Y lags X (by 1 year) and the variables are in-phase.

Therefore, the phase di¤erence should be between ��=2 and 0. In the second half, Y lags X (by

1 year) and the variables are out-of-phase. Therefore, the phase-di¤erence should be between �=2

and �:

Figure 2: on the left � wavelet coherency between Y and X (top) and partial wavelet coherency
between Y and X, after controlling for Z (bottom). The color code for coherency ranges from blue (low
coherency �close to zero) to red (high coherency �close to one). In the middle �phase-di¤erences (top)
and partial phase-di¤erences (bottom) between Y and X. On the right �wavelet gain (top) and partial

wavelet gain of Y over X, after controlling for Z (bottom).
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Finally, note the in�uence of Z on variable Y : given that its in�uence occurs at the frequency

corresponding to a 9 year period, excluding this variable, and therefore incurring in an omitted

variable bias, should contaminate the relation between Y and X at the frequency corresponding

to a 8 year period.

Figure 2 displays the results obtained with the use of the referred wavelet tools. In the left

panel of the �gure, we plot the wavelet coherency between Y and X (top) and partial wavelet

coherency between Y and X after controlling for Z (bottom). In the middle part of the �gure we

present the (circular) means of the phase-di¤erences (two top �gures) and of the partial phase-

di¤erences (two bottom �gures) corresponding to two di¤erent frequency bands (one for periods

of 2:5 to 3:5 years and the other for periods of 7:5 to 8:5 years). On the right of the �gure, we

display the means of the wavelet gain of Y over X (two top �gures) and of the partial wavelet gain

of Y over X controlling for Z (two bottom �gures), corresponding to the same frequency bands.

All the results we were expecting are con�rmed in Figure 2. In particular, note how the

relations between Y and X around the 8 year period are much more accurately estimated when

we use the partial wavelet tool (which corresponds to control for the e¤ects of variable Z).

3 The Data

Our data are quarterly time-series of the federal funds rate (FFR), in�ation and the output gap,

for the U.S. 1965:IV-2014:IV and correspond to the data used by Nikolsko-Rzhevskyy, Papell, and

Prodan (2014) updated through the end of 2014. These are real-time data that were available to

policymakers when interest rate decisions were made, consistently with the sort of data used in the

vast majority of empirical research on monetary policy rules since Orphanides (2001). The source

for output and in�ation is the Real-Time Data Set for Macroeconomists created by Croushore and

Stark (2011) and available at the Philadelphia Federal Reserve website, which provides vintages

of data available since 1965:IV with the data in each vintage starting in 1947:I.2

In�ation is the year-over-year rate of change of the real-time GDP de�ator. The output gap

is the percent di¤erence between real GDP and a real-time quadratic trend, i.e. a trend obtained

2http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-�les/.
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�tting a quadratic function of time to the real GDP data from 1947:I through the vintage date

(see Nikolsko-Rzhevskyy, Papell, and Prodan 2014 for further details, namely on the choice of the

functional form for the trend and on timing issues). It should be emphasized that the output gap

is detrended output, rather than �ltered output, meaning that only its long-run variation has been

removed, and thus analyses of oscillations at all other frequencies are warranted.

The source for the FFR is the FRED (Federal Reserve Economic Data) available at the website

of the Federal Reserve of St. Louis, until 2008:IV.3 From 2009:I onwards, when the policy interest

rate has been constrained by the zero lower bound, we use the shadow FFR of Wu and Xia (2014)

which is computed from a nonlinear term structure model and captures the overall monetary policy

stance, including the e¤ects of unconventional policies.4

In Figure 3, we plot the three time-series, on the left-hand side charts, and their wavelet power

spectra, on the right-hand side, which measure the variance of the series at each time-frequency

locus and provide a �rst time-frequency description of the data.

A �rst overall conclusion is that, with the exception of the output and in�ation instability of

the 1970s, the variability of the three time-series occurs at frequencies corresponding to periods

larger than 4 years.

The chart of in�ation shows its well-known gradual rise between the mid-1960s and the 1970s,

the disin�ation between 1980 and 1986, and the ensuing period of low and stable in�ation, with

particularly low rates following the recent �nancial and economic crisis. The wavelet power spec-

trum of in�ation shows that during the in�ationary period it has oscillated most specially at

business-cycle frequencies (4 � 8 years). After that, during the disin�ation period, the areas of

statistically signi�cant power spectrum become gradually thinner � which illustrates the subse-

quent anchoring of in�ation (and its expectations) and the prolonged period of very low in�ation

variance during the Great Moderation.

The chart of the output gap shows the strong recession associated with the �rst oil shock in the

mid-1970s, as well as the recession in the early 1980s associated with disin�ation; it then shows

the Great Moderation between 1984 and 2007, and the Great Recession starting in 2008. The

3http://research.stlouisfed.org/fred2/.
4http://faculty.chicagobooth.edu/jing.wu/research/data/WX.html.
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wavelet power spectrum indicates a prevalence of cyclical oscillations with periods below 12 years

until 1985 � namely 6 � 8 years and 10 � 12 years � , and then that shorter cycles gradually

lost importance to longer cycles along the sample, with cyclical variability concentrated at cycles

with a rather long period at the �nal part of the sample.

Figure 3: On the left: Plot of each time-series. On the right: The corresponding wavelet power
spectrum. The black/gray contour designates the 5%/10% signi�cance level. The cone of in�uence,
which indicates the region a¤ected by edge e¤ects, is shown with a parabola-like black line. The color
code for power ranges from blue (low power) to red (high power). The white lines show the local

maxima of the wavelet power spectrum.
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The chart of the federal funds rate (FFR) shows that nominal interest rates tended to increase

with in�ation since the mid-1960s, peaked at very high levels at the beginning of the 1980s and

then gradually decreased until the end of the sample. The power spectrum of the FFR indicates

that throughout the whole sample the variability of the policy rate has been systematically strong

at cyclical frequencies of 8 � 10 years, even though with particular strength during the disin�ation,

but has also been strong at shorter cycles (4 � 8 years) during the 1970s.

In Figure 4, we plot the Federal Funds Rate (FFR) and the Reference Policy Rule (RPR), i.e.

the interest rate computed with equation (1) using our real-time output gap and in�ation data.

The �gure conveys two main messages.

Figure 4: The Classic Taylor Rule � the proposed Reference Policy Rule, computed with our real-time
output gap and in�ation � and the Federal Funds Rate since 1965 (e¤ective for 1965:IV-2008:IV,

shadow for 2009:I-2014:IV).

First, it is remarkable how the original TR broadly mimics the overall path of the policy

interest rate, given its simplicity, given that there are no references to interest rate rules in the

Federal Open Market Committee discussions before 1993 (Kahn, 2012) � when policy was much

more discretionary and policymakers�discussions focused on �ne-tuning real activity and not on

maintaining long-run price stability (Taylor, 2012) � and given that policymakers have never

committed to a speci�c TR. The overall compliance of U.S. monetary policy to the TR gains

support from the results of an OLS regression of the TR with our real-time data for 1965:IV-

2014:IV (standard errors in parenthesis): FFTt = 0:17
(0:30)

+ 1:54
(0:07)

�t + 0:51
(0:05)

yt: The estimates for the

coe¢ cients on in�ation and the output gap are almost the same as the original formulation of
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Taylor�s Rule (the smaller intercept may be due to a higher in�ation target or to a lower equilibrium

real interest rate).

Second a closer look at the �gure reveals that in many periods the FFR looks persistently close

to the RPR, while in others it deviates systematically from the RPR. One approach in the literature

has considered the former as episodes of rules-based policy, and the latter as ones of discretionary

policy, typically associating better macroeconomic outcomes with the former. Notably, Taylor

(2012) identi�es a period of discretionary policy before 1985, with the FFR below the RPR during

an era of �ne-tuning until 1979, and above the RPR in the disin�ation after 1979; in 1985-2003,

policy has been rules-based, with its predictable systematic approach arguably key to the Great

Moderation; in 2003-06, he identi�es a policy of FFR substantially and persistently below the

RPR, which he terms the Great Deviation (Taylor, 2011, 2012) and relates with the boom that

led to the 2008 bust and the Great Recession; since then, policy has essentially been ad-hoc, as the

FFR has been consistently below the RPR, including negative interest (shadow) interest rates that

would not be prescribed by the original Taylor Rule. In the same vein, but using formal structural

breaks tests, Nikolsko-Rzhevskyy, Papell, and Prodan (2014) �nd that the FFR followed quite

closely the original Taylor Rule in 1965:IV-1974:III and in 1985:II-2001:I, deviating substantially

from the rule in 1974:IV-1985:I and in 2001:II-2013:IV, with the former period split into one of too

low interest rates (until 1979:IV) and another of too high interest rates (from 1980:I to 1985:I).

Interestingly, when they use a modi�ed Taylor Rule with a coe¢ cient of 1 on the output gap,

Nikolsko-Rzhevskyy, Papell, and Prodan (2014) detect a further break and identify a period of

rules-based policy in 2006:IV-2013:IV. Such modi�ed rule is consistent with statements by the

Governor of the FED pointing out that the implied interest rates are closer to those given by the

optimal control solution of the FRB/US model than the interest rates implied by the original TR

� see Bernanke (2011) and Yellen (2012). Indeed, it prescribes negative interest rates since 2009

� in line with the shadow FFR depicted in Figure 2 � which the original Taylor Rule does not

� as also shown in the picture.

In this paper, rather than comparing the U.S. policy interest rate with the one given by the

original TR, and rather than seeking for alternative coe¢ cients that could improve the �t of a

modi�ed TR to the policy interest rate data, we give due consideration to the arguments (surveyed
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in section 1) that the policy rule coe¢ cients may change both along time and across frequencies.

Hence the worth of the continuous wavelet transform tools that we use in the next section to

estimate the U.S. Taylor Rule in the time-frequency domain.

4 Results: The Taylor rule in the Time-Frequency domain

We now assess the relation between the FFR and the macroeconomic variables of the Taylor

Rule in the time-frequency domain, using multivariate continuous wavelet tools, in particular a

generalization of the wavelet gain for the case of functions with more than one explanatory variable.

We start with the multiple coherency,5 which is the time-frequency analog of the R2 in the

typical regression. Then, we present and discuss the partial coherency, the partial phase-di¤erence,

and the partial gain between the FFR and each of the macroeconomic variables in the Taylor

Rule, controlling for the e¤ects of the other. The latter corresponds to estimating the coe¢ cients

associated to each macro variable in the TR allowing for their variation along time and across

frequencies �i.e. estimating the Taylor Rule coe¢ cients in the time-frequency domain.

While the interpretation of our econometric results proceeds along the standard approach in

similar literature for the coherency and phase-di¤erences (see e.g. Aguiar-Conraria, Martins and

Soares, 2012), it is substantially extended to consider the parametric estimation provided by the

partial gain.

Figure 5 summarizes our results. To facilitate the presentation, we give partial phase-di¤erence

and gain diagrams displaying mean values corresponding to three frequency intervals, namely for

cycles of period 1:5 � 4 years (the short end of business cycles), cycles of period 4 � 8 years

(the bulk of business cycles �uctuations) and cycles of period 8 � 20 years (capturing long run

relations). For the partial phase-di¤erences, which are measured on a circular scale, the mean is

computed as a circular mean, which is the appropriate notion of mean in this case; see, e.g. Zar

(1998, pp. 598-599). The mean gain in a given frequency band is obtained by computing the

absolute value of the mean of the corresponding complex gains.6

5In what follows, since we always deal with wavelet based measures, for simplicity, we will avoid using the word
wavelet and simply write multiple coherency for multiple wavelet coherency, partial gain for partial wavelet gain,
etc.

6To assess signi�cance of multiple and partial coherencies (the latter ones also coincide with signi�cance of the

15



Figure 5: On the left �multiple wavelet coherency (top) and partial wavelet coherency between interest
rate and in�ation (middle) and between interest rate and the output gap (bottom). The black/gray
contour designates the 5%/10% signi�cance level. The color code for coherency ranges from blue (low

coherency �close to zero) to red (high coherency �close to one). In the middle �partial
phase-di¤erences. On the right �partial wavelet gain.

partial gains � see the methodological appendix) we rely on Monte-Carlo simulations (with 5000 replications) after
�tting an ARMA model. Con�dence intervals for the circular mean at each point in time were also computed �
we used the formulas proposed in Zar (1996), p. 604; see also Berens (2009) � and the interpretation of the mean
phase at each point is done considering values as extreme as the two-end points of the corresponding interval. The
limits of the con�dence intervals for the mean phases are indicated in the pictures with black dashed-lines.
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FFR and the Taylor Rule The multiple coherency indicates, for each time-frequency location,

the proportion of the variation in the FFR that is jointly explained by the corresponding variations

of in�ation and the output gap. Hence, it measures the overall �t of the TR in the time-frequency

domain: regions with a signi�cant multiple coherency mean that in�ation and the output gap are

jointly signi�cant explanatory variables of the FFR at those time-frequency locations. The �rst

chart of Figure 5 con�rms that the TR is overall a very good model for the FFR, as shown by the

prevalence of regions depicted in red and yellow, as well as by the large regions within the gray and

dark contours of statistical signi�cance. The further time-frequency details given by the multiple

coherency suggest that the overall �t of the TR has gradually shifted towards cycles of longer

length. At higher frequencies (1:5 � 4 year cycles) it is high during the 1970s and 1980s, but

hardly after 1991. At typical business cycles frequencies (4 � 8 years) it is strong and signi�cant

specially between 1985 and 2005. At longer cycles (8 � 20 years) multiple coherency starts

increasing in the 1990s and becomes statistically signi�cant since the beginning of the 2000s. Such

pattern is consistent with the high intensity of shocks and resulting macro and policy volatility

of the 1970s, the change to a more systematic monetary policy regime and the moderation of

macroeconomic volatility since 1985, the gradual conquer of credibility during the 1990s, and then

the persistence of the slowdown and of the policy reaction since the �nancial crisis of the late

2000s.

The multiple coherency is of assistance in the interpretation of the results given by the partial

coherencies, especially when the explanatory variables are highly related, as is the case in the TR.

Our partial coherencies � to be analyzed in the next sub-sections � capture the co-movement

between each explanatory variable (in�ation and output) and the FFR, �ltering out the e¤ect of

the other. Yet, there is typically a strong co-movement between in�ation and the output gap, the

Phillips Curve � indeed, the predictive power of the gap over in�ation is often invoked to motivate

its inclusion in the TR. In such circumstances, while the overall signi�cance of the model is high,

the signi�cance of individual co-movements for both explanatory variables may appear mistakenly

low. It is therefore important that the partial coherencies are interpreted together with the multiple

coherency. A notable example is the time-frequency region between 1973 and 1980 for frequencies

of 4 � 8 years: while both partial coherencies are mostly blue, the multiple coherency is mostly
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red and statistically signi�cant; hence, in spite of the apparent lack of statistical signi�cance of

the partial coherencies, we are able to interpret the evolution of the coe¢ cients on in�ation and

on the output gap in that time-frequency region.

FFR and in�ation The partial coherency between the FFR and in�ation exhibits di¤erent

patterns across our three ranges of frequency-bands. At the short-run frequencies (period of

1:5 � 4 years) the partial coherency is strong and signi�cant from the second half of the 1970s

until the beginning of the 1990s. At the typical business cycles frequencies (4 � 8 years), the

coherency is strong and signi�cant between 1985 and the end of the rules-based era, 2003. At the

lower frequencies (period 8 � 20 years) the coherency is consistently strong throughout the whole

period, but is only signi�cant after the beginning of the 1990s.

When the coherencies are signi�cant, the phase-di¤erences for both the 4 � 8 years and

the 8 � 20 years frequency bands are stable and consistently located in the interval (��=2; 0),

indicating a positive co-movement � as expected in the TR � with in�ation leading the FFR.

Note, however, that at the 8 � 20 frequencies the lag between the interest rates and in�ation is

larger (phase di¤erence closer to ��=2), which suggests that U.S. monetary policy has reacted

more timely to changes in in�ation at business cycle frequencies than at longer cycles. The phase-

di¤erences vary more in the frequency band of 1:5 � 4 years, but, when the coherency is signi�cant,

they overall indicate a positive co-movement, with the FFR lagging in�ation until 1986 and leading

in�ation in 1987-91.

We now focus on the time-frequency partial gain from FFR to in�ation, displayed in the upper

three charts of the right-hand-side of Figure 5. We have seen above that the full sample OLS

estimate of the slope on in�lation in the TR is essentially Taylor�s baseline value of 1:5. Looking

at the time-frequency estimates, we now see that they exhibit considerable variation around that

value, with important di¤erences across our frequency bands, which indicates that the TR implicit

in U.S. monetary policy has changed along both dimensions � time and frequency.

The most interesting result, which is common to all frequency bands, is that the gain is below

1:0 � violating the Taylor principle � between around early 1970s and early 1980s. At the short-

run frequencies, when signi�cant (from the second half of the 1970s until the beginning of the
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1990s), the gain �uctuates between 0:5 and 1:5. It falls below the Taylor principle threshold of

1:0 between 1974 and 1981, and then �uctuates within the range of 1:0 to 1:5 until the beginning

of the 1990s. It is interesting to note that since the rules-based era of 1985-2003, the in�ation

coe¢ cient is sistematically above the baseline vale of 1:5 both at the core of the business cycle

frequencies (4 � 8 years) and at long run frequencies (8 � 20 years). To be more precise, at the

core business cycle frequencies, the gain increases from 0:5 in 1979 to 2:5 in 1987. After that �

when statistically signi�cant � remains at values between 1:5 and 2:5. At the long run frequencies,

it �uctuates around 2, starting in 1990 and throughout until the end of the sample.

Our results thus add important information to the studies of U.S. monetary policy that, follow-

ing Clarida et al. (2000), document that U.S. policy reacted more to in�ation after 1979, showing

that the timing and size of the change in reaction di¤ers across cyclical frequencies.

FFR and the output gap The partial coherency between the FFR and output exhibits dif-

ferent patterns across the frequency-bands, which to some extent resemble the patterns of the

multiple coherency and of the partial FFR-in�ation coherency � a gradual shift of co-movement

towards cycles of longer length. Yet, two di¤erences are noteworthy. First, coherency at short-run

frequencies (period of 1:5 � 4 years) are much more pervasive and indeed signi�cant from the

early 1970s until the beginning of the 2000s, and then in a further episode in 2011-2014; second,

coherency is much more limited at the typical business cycles frequencies (4 � 8 years), at which it

is only signi�cant during the 1990s. At the lower frequencies (period 8 � 20 years) the coherency

is strong only since the beginning of the 1990s and signi�cant merely since the mid-1990s.

When coherencies are signi�cant, the phase-di¤erences consistently indicate a positive co-

movement between the FFR and the output gap, as expected, with the FFR slightly leading

output. The only major exception occurs in the early 1990s�downturn �speci�cally between 1993

and 1998 �for short cycles (1:5 � 4 years), when phase-di¤erences are located in the (��=2; 0) and

are statistically di¤erent from 0, meaning that the output gap was leading the FFR. Overall (with

the exception of 1993-1998 at short cycles), the partial coherencies and phase-di¤erences indicate

that U.S. monetary policy has attempted to preemptively stabilize the output gap for most of the

time span and frequency bands at which the FFR and the output gap have co-moved signi�cantly;
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the positive co-movement in the data is consistent with such a forward-looking policy approach,

given the lags in the transmission of interest rates policy to real activity (and in�ation).

To obtain quanti�ed results about the coe¢ cient of output in the U.S. TR, we now assess the

time-frequency partial gain from the FFR to the output gap, displayed in the three charts on the

bottom right-hand-side of Figure 5.

At the short-run frequencies (period of 1:5 � 4 years), during the extended period in which it

is consistently signi�cant (from the early 1970s until the beginning of the 2000s), the gain is close

to 1:0 most of the time, with the only notable exception in 1989-1993 when it falls to the baseline

value of 0:5. After 2009 �including the 2011-2014 period of signi�cant gain �when policy was

highly expansionary to �ght the Great Recession, the gain increases markedly and reaches values

close to 2:0 by the end of the sample

At the business cycles frequencies (4 � 8 years), when signi�cant (1990s) the gain starts with

a value close to 1:0 in 1990 and gradually falls until 1997, then maintaining the baseline value of

0:5 until the end of the 1990s. Previously, since the early 1970s �when the partial coherency is

not signi�cant but the multiple coherency is �the gain �uctuates between the full sample estimate

of 0:5 and the value of 1:0 that it features at the beginning of the 1990s.

At frequencies corresponding to the 8 � 20 years period, when statistically signi�cant �i.e.

after the mid-1990s �the gain is consistently close to 1:0, a level that it maintains until the end of

the sample period. Previously, when coherency started increasing although not being statistically

signi�cant �in the second half of the 1980s �the gain increased from a value somewhat below 0:5

and reached the level of 1:0 at the beginning of the 1990s.

Our estimates for the gains of the output gap across frequencies hence suggest that the full

sample OLS estimate of 0:5 is an artifact resulting from di¤erent coe¢ cients across frequencies

and along time. Before the beginning of the 1990s, values of the gain below 0:5 at the 8 � 20

cycles are o¤set by values mostly above 0:5 at the 4 � 8 years and 1:5 � 4 years cycles; after 1991,

values of the gain close to 1:0 at the 8 � 20 cycles are compensated by values gradually smaller

and close to 0:5 after 1997 at the 4 � 8 cycles, and after 2003 at the 1:5 � 4 years cycles. In the

brief episode of the early-1990s in which the gain is above 0:5 at both the 4 � 8 and 8 � 20 years

frequency bands, it is particularly low at the 1:5 � 4 years cycles �actually around 0:5 between
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1989 and 1993.

Our estimates for the gains in the latter part of the sample show that the �nding elsewhere in

the literature and statements by policy-makers pointing to a coe¢ cient of 1:0 on the output gap in

the U.S. TR since the Great Recession is not evenly explained across frequencies. After 2009, the

estimate for the gain at the 8 � 20 years cycles band is consistently 1:0, and the gain at the 1:5 � 4

years frequency band sharply increases from 0:5 to more than 1:5, while the gain at the 4 � 8

years cycles is close to 0:0 and not signi�cant. With time-series tools, Nikolsko-Rzhevskyy, Papell

and Prodan (2014) found that since 2007 U.S. monetary policy follows a modi�ed Taylor Rule

with a coe¢ cient of 1:0 on the output gap; a coe¢ cient twice as large as that in the original TR

is consistent with the preferences for a balanced approach to stabilize output and prices stated by

Federal Reserve Governors during the Great Recession � see Bernanke (2011) and Yellen (2012);

moreover, it is consistent with negative policy interest rates since 2009, in line with the estimated

shadow FFR for that period � which the original TR with a 0:5 coe¢ cient on the output gap

is not. Our framework shows that the prevalence of a modi�ed TR with a slope of 1:0 on the

output gap since 2009 is associated to policy actions focusing on the short-end (1:5 � 4 years)

and long-end (8 � 20 years) of cyclical oscillations, and not on the most standard business cycle

frequencies (4 � 8 years).

5 Conclusions

In this paper we assessed U.S. monetary policy in 1965:IV-2014:IV across time and frequencies

in the framework of the Taylor Rule (TR). While variation in the TR coe¢ cients along time

has already been the subject of a vast literature, there was no study yet of variations of the

TR coe¢ cients simultaneously in the continuous time and frequency domains. Yet, there are

compelling reasons to expect changes in the TR coe¢ cients that di¤er across cyclical frequencies,

and so documenting those changes enhances the understanding of U.S. monetary policy under the

lens of the TR.

Following the most common and adequate practice in the literature, we use real-time data

(on in�ation and the output gap) available to policymakers when policy decisions were made. As
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regards the policy interest rate, we pursue a recently proposed approach and, in 2009-2014, replace

the e¤ective fed funds rate (FFR) with a shadow FFR able to capture the negative interest rates

implied by recent unconventional quantitative monetary policy.

We use a set of continuous wavelet tools � the wavelet coherency, phase-di¤erence, and gain

� that allow for assessing the intensity, sign and synchronization (or lead/lag) of the co-movement

between our time-series, as well as for estimating the respective regression coe¢ cient in the time-

frequency domain and providing statistical inference for all these measures. In particular, we

employ partial wavelet tools to describe the co-movements along time and across frequencies

between the policy interest rate and in�ation (controlling for the output gap) and between the

policy interest rate and the output gap (controlling for in�ation). Methodologically, our main

contribution to the literature is to provide a multi-variable generalization of the wavelet gain that

allows for estimating multivariate functions in the time-frequency domain.

Regarding results, we provide a set of stylized facts on the U.S. TR in the last �ve decades

that would not have been possible to detect with pure time- or frequency-domain tools, nor with

the time-frequency domain tools available thus far. In particular, we provide estimates of the TR

slopes that are allowed to vary both across frequencies and along time.

Regarding the relation between in�ation and monetary policy, we uncovered a number of results

that may be summarized as follows. First, within the framework of the TR, we document a gradual

shift of the co-movement between the FFR and in�ation towards cycles of longer length, along

the last �ve decades of U.S. monetary policy. Second, we con�rm that the co-movement between

the FFR and in�ation has been positive at all frequencies, but �nd synchronization for higher

frequencies, while for lower the FFR has lagged in�ation. Third, the in�ation coe¢ cient in the

U.S. TR has changed much more markedly for cycles of intermediate duration (4 � 8 years) than

for longer cycles (8 � 20) and shorter cycles likewise (1:5 � 4 years). Fourth, rather than a change

from a constant coe¢ cient below 1:0 before 1979 to a coe¢ cient above 1:0 after 1979, there was a

gradual decrease of the in�ation coe¢ cient until the mid-1970s, followed by an increase after 1979

that is essentially completed at the start of the 1985-2003 rules-based era, and is most marked at

the 4 � 8 year cycles. Fifth, our estimates suggest that the Taylor principle has been violated for

longer at frequencies that correspond to cycles of longer period, although statistical uncertainty
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is higher the lower are frequencies, notably before 1990. Finally, we show since the mid-1980s �

1984 for cycles of period 4 � 8 years and 1987 for cycles of period 8 � 20 years � the coe¢ cient

on in�ation in the TR is consistently above the baseline value and full sample estimate of 1:5.

As regards the output gap, we emphasize the following �ndings. First, within the framework

of the TR, we document a gradual shift of the co-movement between the FFR and the output

gap towards cycles of longer length, along the last �ve decades of U.S. monetary policy; with this

respect, the co-movement between the FFR and output has been stronger at shorter oscillations

(1:5 � 4 years frequency band) and weaker at business cycles frequencies (4 � 8 years) than the

co-movement with in�ation. Second, we con�rm that the co-movement between the FFR and

output has been positive at all frequencies, with the policy rate leading output for most of the

time and frequencies, consistently with an anti-cyclical stance and with the lags of policy impact.

Third, we document that the full sample OLS estimate of 0:5 is an artifact resulting from di¤erent

coe¢ cients across frequencies and along time: before the 1990s, estimates below 0:5 at the 8 � 20

years cycles are o¤set by estimates mostly above 0:5 at the 4 � 8 years and 1:5 � 4 years cycles;

after 1991, estimates close to 1:0 at the 8 � 20 cycles are compensated by estimates gradually

smaller and close to 0:5; after 1997 at the 4 � 8 cycles and after 2003 at the 1:5 � 4 years

cycles. Fourth, we show that the time-series evidence and policy-makers�statements pointing to

a modi�ed TR with a slope of 1:0 on the output gap in the U.S. TR since the Great Recession is

not evenly explained across frequencies, being associated to stronger reactions of policy to output

at the short-end (1:5 � 4 years) and long-end (8 � 20 years) of cyclical oscillations, but not at

the most standard business cycle frequencies (4 � 8 years).
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A Methodological Appendix

The continuous wavelet transform is an increasingly popular tool in econometric analysis. The

most common argument to justify its use is the possibility of tracing transitional changes across

time and frequencies � see Aguiar-Conraria and Soares (2014) for a review. So far, the analysis in

the time-frequency domain with the continuous wavelet transform has been mostly limited to the

use of the wavelet power spectrum, the wavelet coherency and the wavelet phase-di¤erence. Aguiar-

Conraria and Soares (2014) already extended these tools to allow for multivariate analyses. These

multivariate tools are su¢ cient to assess the strength of the relation between several variables,

but they are insu¢ cient to estimate the magnitude of the relation. Just like (partial) correlation

coe¢ cients do not provide the same information as the regression coe¢ cients.

Mandler and Scharnagl (2014) use the concept of the wavelet gain as a regression coe¢ cient

in the regression of y on x. In this paper, and, to our knowledge, for the �rst time, we will

estimate an equation relating more than two variables (just like a regression of y on x and z) in

the time-frequency domain. To do so, we generalize the concept of wavelet gain and de�ne the

partial wavelet gain, which can be interpreted as a regression coe¢ cient in the regression of y

on x after controlling for other variables. At the end of this appendix, we provide a example to

illustrate the application of this tool..

A.1 The Continuous Wavelet Transform

For all practical uses, a wavelet  (t) is a function that oscillates around the t-axis and looses

strength as it moves away from the center, behaving like a small wave. The speci�c wavelet we use

in this paper is the complex-valued function (selected from the so-called Morlet wavelet family)

de�ned by  (t) = ��
1
4 e6 i te�

t2

2 : Given a time-series x (t), its continuous wavelet transform (CWT),

with respect to a given wavelet  , is the function of two variables, Wx (� ; s), given by

Wx (� ; s) =
1p
jsj

Z 1

�1
x(t) 

�
t� �

s

�
dt: (A.1)
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A.2 Uni and bivariate tools

All the quantities we are going to introduce are functions of time (�) and scale (s). To simplify

the notation, we will describe these quantities for a speci�c value of the argument, (� ; s), which

will be omitted in the formulas.

A.2.1 Wavelet power spectrum and the phase angle

In analogy with the terminology used in the Fourier case, the (local) wavelet power (spectrum) is

de�ned as

(WPS)x = jWxj2 : (A.2)

This gives us a measure of the variance distribution of the time-series in the time-frequency plane.

When the wavelet  is complex-valued, as in our case, the wavelet transformWx is also complex-

valued. In this case, the transform can be expressed in polar form asWx = jWxj ei�x ; �x 2 (��; �]:

The angle �x is known as the (wavelet) phase.

A.2.2 Cross wavelet tools

The cross-wavelet transform of two time-series x(t) and y(t), denoted by Wxy is de�ned as

Wxy = WxW y ; (A.3)

where Wx and Wy are the wavelet transforms of x and y, respectively. The absolute value of the

cross-wavelet transform, jWxyj, will be referred to as the cross-wavelet power . The cross-wavelet

power of two time-series depicts the covariance between two time-series at each time and frequency.

We de�ne the complex wavelet coherency of x and y, %xy, by

%xy =
S (Wxy)

[S (jWxj2)S (jWyj2)]1=2
; (A.4)

where S denotes a smoothing operator in both time and scale. For notational simplicity, we will

denote by Sxy the smoothed cross-wavelet transform of two series x and y and also use �x and �y

to denote, respectively,
p
S(jWxj)2 =

p
Sxx and

p
S(jWyj)2 =

p
Syy. With these notations, we
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will simply write the formula for the complex coherency as

%xy =
Sxy
�x�y

: (A.5)

The wavelet coherency, which we will denote by Rxy, is de�ned simply as the absolute value of

the complex wavelet coherency, i.e. is given by

Rxy = j%xyj: (A.6)

With a complex-valued wavelet, we can compute the phase of the wavelet transform of each

series and, by computing their di¤erence, we can then obtain information about the possible delays

of the oscillations of the two series, as a function of time and frequency. It follows immediately

from (A.3) that the phase-di¤erence, which we will denote by �xy, can also be computed as

the angle of the cross-wavelet transform. Another slightly di¤erent way to de�ne the phase-

di¤erence makes use of the angle of the complex wavelet coherency, instead of the angle of the cross-

wavelet transform; this de�nition, although not strictly coinciding with the di¤erence between the

individual phases, due to the smoothing, has the advantage of allowing a more direct generalization

for the multivariate case.

Finally, we de�ne the complex wavelet gain of y over x, denoted by Gyx, by

Gyx =
Syx
Sxx

= %yx
�y
�x

(A.7)

and, following Mandler and Scharnagl (2014), we call wavelet gain, which we denote by Gyx, to

the modulus of the complex wavelet gain, i.e.

Gyx =
jSyxj
Sxx

= Ryx
�y
�x
: (A.8)

Recalling the interpretation of the Fourier gain as the modulus of the regression coe¢ cient of y on

x at a given frequency (see, e.g. Engle 1976), it is perfectly natural to interpret the wavelet gain

as the modulus of the regression coe¢ cient in the regression of y on x, at each time and frequency.
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A.3 Multivariate wavelet analysis

Let p (p > 2) time-series x1; x2; : : : ; xp be given. We �rst introduce a set of notations.

We will denote by Wi the wavelet spectrum corresponding to the time-series xi and by Wij

the cross-wavelet spectrum of the two series xi and xj. Just as in the case of ordinary wavelet

coherency, to compute partial wavelet coherencies it is necessary to perform a smoothing operation

on the cross-spectra. We will denote by Sij the smoothed version of Wij, i.e. Sij = S (Wij), where

S is a certain smoothing operator. We will use S to denote the p� p matrix of all the smoothed

cross-wavelet spectra Sij, i.e. S = (Sij)
p
i;j=1.

7 For a given matrix A, Aji denotes the sub-matrix

obtained by deleting its i-th row and j-th column and Adij denotes the co-factor of the element in

position (i; j) of A, i.e. Adij = (�1)(i+j) detA
j
i : For completeness, we use the notation A

d = detA.

Finally, for a given integer j such that 2 � j � p, we denote by qj the set of all the indexes from

2 to p with the exception of j, i.e. qj = f2; : : : ; pg n fjg:

A.3.1 Multiple and partial wavelet coherency and partial phase-di¤erence

The squared multiple wavelet coherency between the series x1 and all the other series x2; : : : ; xp

will be denoted by R21(23:::p) and is given by the formula

R21(23:::p) = 1�
S d

S11S d
11

: (A.9)

The complex partial wavelet coherency of x1 and xj (2 � j � p) allowing for all the other series

will be denoted by %1 j:qj and is given by

%1 j:qj = �
S d
j1p

S d
11

q
S d
jj

: (A.10)

The partial wavelet coherency of x1 and xj allowing for all the other series, denoted by R1 j:qj ,

is de�ned as the absolute value of the above quantity, i.e. R1 j:qj =
jS d

j1jp
S d
11

p
S d
jj

; and the squared

partial wavelet coherency of x1 and xj allowing for all the other series, is simply the square of

7To be more correct, S depends on the speci�c value (� ; s) at which the spectra are being computed, i.e. there
is one such matrix for each (� ; s).
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R1 j:qj . Having de�ned the complex partial wavelet coherency %1 j:qj of series x1 and xj controlling

for all the other series, we simply de�ne the partial phase-di¤erence of x1 and xj given for all the

other series, denoted by �1 j:qj , as the angle of %1 j:qj :

A.3.2 Partial wavelet gain

We de�ne the complex partial wavelet gain of series x1 over series xj allowing for all the other

series, denoted by G1 j:qj , by the formula

G1 j:qj =
S d
j1

S d
11

(A.11)

and the partial wavelet gain, denoted by G1 j:qj , as the modulus of the above quantity, i.e.

G1 j:qj =
jS d

j1j
S d
11

: (A.12)

Naturally, the partial wavelet gain can also be computed using the partial wavelet coherency, as

G1 j:qj = R1 j:qj

q
S d
jjp

S d
11

: (A.13)

For j = 2; : : : ; p, the valuesG1;j:qj can be interpreted as the coe¢ cients (in modulus) in the multiple

linear regression of x1 in the explanatory variables x2; : : : ; xp, at each time and frequency.

A.3.3 Formulas in terms of coherencies

The above formulas for the partial wavelet coherency and for the partial wavelet gain were given in

terms of the smoothed spectra Sij. We can also de�ne these quantities in terms of simple complex

coherencies (i.e. wavelet complex coherencies between pairs of series).

Corresponding to the matrix S , we now consider the matrix C = (%ij)
p
i;j=1 of all the complex

wavelet coherencies %ij. Then, we can de�ne the multiple wavelet coherencies by the following

alternative formula

R21(23:::p) = 1�
C d

C d
11

; (A.14)
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the complex partial wavelet coherency by

%1 j:qj = �
C d
j1p

C d
11

q
C d
jj

; (A.15)

and the partial wavelet gain by

G1 j:qj =
jC d
j1j

C d
11

�1
�j
: (A.15)

The proof of the above results is a simple application of the properties of determinants; see Aguiar-

Conraria and Soares (2014) for details concerning the multiple and partial coherencies.

A.4 Statistical Signi�cance

To test signi�cance of the wavelet power spectrum, one can rely on the results of Torrence and

Compo (1998), which shows that the local wavelet power spectrum of a white noise or an AR(1)

process, normalized by the variance of the time series, is very well approximated by a chi-squared

distribution. Testing the wavelet power spectrum against a �at spectrum (white noise) is a good

starting point. If one wants to consider more complicated null hypotheses, rather a white or red

noise, one usually relies on Monte-Carlo simulations.

To test signi�cance of coherency and partial coherency there are no good theoretical results.

The ones that exist impose too stringent restrictions. Therefore, one usually relies on Monte-Carlo

simulations. In our case, we �t an ARMA model to each of the series and construct new samples

by drawing errors from a Gaussian distribution with a variance equal to that of the estimated

error terms; for each set of time-series we perform the exercise several times, and then extract the

critical values.

By comparing the formulas of the (partial) gain with the (partial) coherency, for example,

comparing formula (A.6) with formula (A.8), it should be apparent that if one has the value zero,

so does the other. Therefore, when we test the null hypothesis that the (partial) coherency is zero,

we are simultaneously testing the null huypothesis that the (partial) gain is zero. Our Monte-Carlo

simulations con�rm this assertion.
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