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Abstract

Literature on dynamic portfolio choice has been �nding that volatility risk has low impact

on portfolio choice. For example, using long-run U.S. data, Chacko and Viceira (2005) found

that intertemporal hedging demand (required by investors for protection against adverse changes

in volatility) is empirically small even for highly risk-averse investors. We want to assess if this

continues to be true in the presence of ambiguity. Adopting robust control and perturbation

theory techniques, we study the problem of a long-horizon investor with recursive preferences that

faces ambiguity about the stochastic processes that generate the investment opportunity set. We

�nd that ambiguity impacts portfolio choice, with the relevant channel being the return process.

Ambiguity about the volatility process is only relevant if, through a speci�c correlation structure,

it also induces ambiguity about the return process. Using the same long-run U.S. data, we �nd

that ambiguity about the return process may be empirically relevant, much more than ambiguity

about the volatility process. Anyway, intertemporal hedging demand is still very low: investors

are essentially focused in the short-term risk-return characteristics of the risky asset.

Keywords: Dynamic Portfolio Choice, Stochastic Volatility, Ambiguity, Robust Control, Pertur-

bation Theory.

JEL Classi�cation: C61 · D81 · E21 · G11.

1 Introduction

We study optimal dynamic portfolio choice under a stochastic investment opportunity set, of an investor

that is averse both to risk and ambiguity. We want to understand if and how ambiguity about
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the stochastic processes that generate the return and volatility of the risky asset impacts portfolio

choice. More particularly, we want to assess if stochastic volatility continues to have a low impact on

portfolio choice, as it has been found in the literature, in the presence of ambiguity about the stochastic

investment opportunity set.1

There is a large literature on portfolio choice (see, e.g., Kogan and Uppal (2001) and Campbell

and Viceira (2002) for a survey), but relatively few works study optimal dynamic portfolio choice

with stochastic variance of the risky asset's return. Some examples are Kim and Omberg (1996) and

Chacko and Viceira (2005), with incomplete markets, and Schroder and Skiadas (1999), with complete

markets. Schroder and Skiadas (2003) gave a general closed-form solution for the consumption-portfolio

problem, which includes the other models as special cases. Other papers consider multiple risky assets,

as Liu (2007) and Buraschi et al. (2010). Potentially adverse changes in the investment opportunity

set are associated with stochastic variance of the risky asset's return, which therefore represents a

source of risk to investors. This implies, from Merton (1973), that stochastic variance originates an

intertemporal hedging demand.2 Chacko and Viceira (2005) concluded, using long-run U.S. data, that

this intertemporal hedging demand is empirically small even for highly risk-averse investors.

In all the papers mentioned above, there is only risk, and no ambiguity. Ambiguity is uncertainty

that cannot be represented by a single probability distribution. Risk, on the contrary, is uncertainty

that is susceptible of being described by a probability distribution. This conceptual distinction, �rst ex-

plored by Knight (1921), has relevant implications for the behavior of economic agents, and, therefore,

for economic theory in general. Ellsberg (1961) disclosed experimental evidence supporting the Knigh-

tian distinction between risk and ambiguity. This evidence became known as the Ellsberg paradox,

and motivated a huge literature (surveyed in Camerer and Weber (1992) and Epstein and Schneider

(2010)).

Notwithstanding this, the mainstream theory of choice under uncertainty in economics ignored

ambiguity for several decades, remaining based on the expected utility theory of von Neumann and

Morgenstern (1944), where the probabilities of the possible states of nature are known, and on the

subjective expected utility theory of Savage (1954), where, although probabilities are not necessarily

known, the choice behavior of an agent coincides with the maximization of expected utility according

to some subjective probability beliefs.

Gradually, ambiguity is being incorporated in decision theory. Two main approaches are being used:

(i) the multiple priors (MP) approach, where the single probability measure of the expected utility

models (precise beliefs) is replaced by a set of probabilities or priors (imprecise beliefs); (ii) the robust

control (RC) approach, associated to an assumption of model uncertainty. The relationship between

the MP and RC approaches has been widely discussed in the literature, for example, in Hansen and

Sargent (2001), Hansen et al. (2002), Epstein and Schneider (2003), and Maccheroni et al. (2006).

Ahn et al. (2011) found empirical support for the relevance of studying the portfolio choice problem

under ambiguity (about 2/3 of agents in their experience showed a positive degree of ambiguity aver-

sion). Bossaerts et al. (2010) also concluded that ambiguity aversion can be observed in competitive

1Throughout this paper, by �volatility� of the risky asset we mean the variance of the risky asset's return. For
mathematical convenience, we work with precision (the reciprocal of variance).

2In the multivariate setting of Buraschi et al. (2010), with a stochastic variance-covariance matrix, there is an intertem-
poral hedging demand associated with the stochastic variance and another associated with the stochastic correlation
between the returns of the risky assets.
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markets and that it in�uences portfolio choice and asset prices.

In studies of portfolio choice with ambiguity, Garlappi et al. (2007) and Gollier (2011) concluded

that, by introducing ambiguity aversion in a static MP approach, the optimal demand for the risky

asset decreases versus the standard mean-variance and Bayesian models.3 The same conclusion was

reached in a dynamic MP setting (e.g., Chen et al. (2011)) and in a dynamic RC model (e.g., Maenhout

(2004, 2006) and Xu et al. (2011)). The implications of ambiguity aversion for portfolio diversi�cation

have also been studied (Uppal and Wang (2003)). In all these works, with the exception of Xu et al.

(2011), the source of ambiguity is exclusively the expected risky asset's return or the risky asset's

return process.

In this paper, we extend the model of Chacko and Viceira (2005) for optimal dynamic portfo-

lio choice, by introducing ambiguity about the data generating process of the stochastic investment

opportunity set. The motivation for this is provided by Chacko and Viceira themselves:

�An important caveat of our empirical analysis is that we have counterfactually assumed that in-

vestors observe volatility (or precision), and that they take as true parameters our empirical estimates

of the joint process for returns and volatility. In practice, however, investors do not observe volatility,

and they do not know the parameters of the process for volatility, or even the process itself.�

Literature on dynamic portfolio choice with stochastic variance has been �nding that variance risk

has low impact on portfolio decisions (e.g., Chacko and Viceira (2005) and Liu (2007)). We want to

understand if this continues to be true if uncertainty is considered in a broader perspective, by taking

into account an �ambiguity dimension� alongside the standard �risk dimension�.

It has been advocated in the literature (Cao et al. (2005), Garlappi et al. (2007) and Ui (2011))

that it is reasonable to assume that investors estimate the variance of the risky asset's return without

ambiguity, and that it is preferable to assume ambiguity about expected returns. Reasons invoked for

this are analytical tractability, empirical evidence on the predictability of the variance of stock returns

(Bollerslev et al. (1992)), higher di�culty in estimating the expected returns versus expected variance

(Merton (1980)) and higher costs associated with errors in estimating expected returns versus expected

variance (Chopra and Ziemba (1993)).

Nevertheless, we introduce ambiguity also about the variance process of the risky asset's return

because (i) there is no a priori reason to assume that investors are not ambiguous about it, and because

(ii) we are able to �nd an asymptotic analytical solution and test it empirically.

In Faria et al. (2009), the setting of Chacko and Viceira (2005) was extended by considering

a representative investor that is ambiguous about one speci�c parameter of the stochastic variance

process (the expected value). A MP approach was adopted, and the conclusion was that ambiguity

does not impact the instantaneous optimal portfolio choice rule. The ambiguity e�ect would only exist

if the investor were not able to continuously update his portfolio. In Faria and Correia-da Silva (2010),

we obtained the optimal portfolio rule in a dynamic setting, with stochastic variance and ambiguity

about its process. There, it was assumed that the representative investor derives utility exclusively

through terminal wealth, implying that the intertemporal consumption-savings decision is ignored, and

ambiguity is treated through a RC approach. The optimal portfolio rule that was derived showed that

ambiguity aversion has an additive impact to risk aversion.

3Although the result of Gollier (2011) requires some restrictions on the set of priors and on the investor's attitude
towards risk.
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The closest paper to the present work is that of Xu et al. (2011), where preferences of the represen-

tative investor are given by the SDU function introduced by Du�e and Epstein (1992b) and ambiguity

about the data generating process with stochastic variance is also considered and studied through a

RC approach. Compared with the contribution of Xu et al. (2011), our paper brings three major

novelties. The �rst results from the fact that we adopt a di�erent RC methodology: �constrained

preferences� instead of �multiplier preferences� (also applied in Faria and Correia-da Silva (2010)).4

Under �constraint preferences�, there is a constraint on the magnitude of the allowable perturbations

from the benchmark model. Under �multiplier preferences�, preferences for robustness are constructed

by penalizing deviations from the benchmark model, with higher deviations being more penalized than

smaller ones. A relevant implication is that under �constrained preferences� the impact of ambiguity

on the optimal portfolio choice is more than simply an enhanced risk aversion. Moreover, in order to

derive optimal policies under ambiguity, we use perturbation theory, as, for example, in Trojani and

Vanini (2002, 2004). The rationale behind the perturbation (asymptotic) method is well described by

Trojani and Vanini (2004): �[...] formulate a general problem, �nd a particular relevant case that has

a known solution, and use this as a starting point for computing the solution to nearby problems.� In

our case, as in Trojani and Vanini (2004), the asymptotic solution of the problem under ambiguity

holds in neighborhoods of a model with no ambiguity aversion.

The second di�erence relatively to Xu et al. (2011) is that we want to understand the relevant

channels (return process, variance process or both) through which ambiguity impacts dynamic portfolio

choice. For that, we study optimal dynamic portfolio choice when ambiguity is simultaneously about

the return and volatility processes, as in Xu et al. (2011), and when it is exclusively about the return

process or the variance process.

The third di�erence versus Xu et al. (2011) is that we simulate our model using long-run U.S. data

to measure the empirical signi�cance of the impact of ambiguity on optimal portfolio choice. This is

crucial, as, ultimately, we are addressing the question of whether stochastic variance is relevant for

portfolio choice.

The main conclusions of this paper concern the impact of ambiguity on optimal dynamic policies,

both when ambiguity is simultaneously about the return and variance processes and when it is ex-

clusively about one of these stochastic processes. In all scenarios, we �nd that ambiguity does not

impact the optimal consumption rule (instantaneous consumption as a function of current wealth).

The e�ect of ambiguity is a reduction of the demand for the risky asset. The relevant channel is the

return process, as when ambiguity is exclusively about the variance process there is no impact on the

optimal portfolio rule. Ambiguity about the variance process is only relevant if, through a speci�c

correlation structure, it also induces ambiguity about the stochastic process that generates the return

of the risky asset.

Using long-run U.S. data, we �nd that ambiguity about the stochastic processes driving the in-

vestment opportunity set is empirically relevant for portfolio decisions. Our simulation suggests that

ambiguity about the return process is empirically much more relevant than ambiguity about the vari-

ance process. We also conclude that, even accounting for ambiguity about the variance process, the

intertemporal hedging demand (required by investors for protection against adverse changes in vari-

4We adopt this terminology from Hansen and Sargent (2006).
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ance) is still very low. Investors are essentially focused in short term risk-return characteristics of

the risky asset. This had been found under settings were uncertainty is exclusively risk (for exam-

ple in Chacko and Viceira (2005) and Liu (2007)) and we extend that conclusion for a setting where

uncertainty also has an ambiguity dimension.

The paper is organized as follows. In section 2, we present the model and state the problem to

be solved. In section 3, we present the analytical solution to that problem and the key results. In

section 4 we analyze alternative scenarios for the sources of ambiguity, deriving analytical solutions

and comparing its results with those of section 3. In section 5, simulation results are presented. In

section 6, we conclude the paper with some remarks.

2 Consumption and Portfolio Choice Problem

In section 2.1, the investment opportunity set is described. In section 2.2, the preferences of the

representative investor are presented. In section 2.3, the dynamic optimization problem to be solved

is disclosed.

2.1 Investment Opportunity Set

In this section, we describe the investment opportunity set that is faced by the representative investor.

We follow closely Chacko and Viceira (2005).

All wealth must be allocated between a riskless asset with price Bt and a risky asset with price St.

The instantaneous return of the riskless asset is described by:

dBt
Bt

= rdt , (1)

where r stands for the risk free interest rate.

The instantaneous return of the risky asset is given by:

dSt
St

= µdt+

√
1

yt

(
ρdWy +

√
1− ρ2dWε

)
, (2)

where µ is the expected return of the risky asset and yt is the instantaneous precision of the risky

asset's return process (the instantaneous variance is vt = 1
yt
). Wε and Wy are two independent

standard Brownian motions.

The precision, yt, follows a mean-reverting, square-root process as used by Cox et al. (1985):

dyt = κ (θ − yt) dt+ σ
√
ytdWy , (3)

where the expected value of precision is E [yt] = θ, the reversion parameter is κ > 0, and, thus,

V ar [yt] = σ2θ
2κ . To guarantee standard integrability conditions, it is assumed that 2κθ > σ2, as in Cox

et al. (1985).

Applying Itô's Lemma to (3), a mean-reverting, square-root process for proportional changes in
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variance is obtained:
dvt
vt

= κv (θv − vt) dt− σ
√
vtdWy , (4)

where θv =
(
θ − σ2

κ

)−1
and κv = κ

(
θ − σ2

κ

)
= κ

θv
.

An approximation of the unconditional mean of instantaneous variance is:5

E [vt] ≈
1

θ
+

σ2

2κθ2
. (5)

As the expected return of the risky asset, µ, is assumed to be constant, (5) is also the unconditional

variance of the risky asset's return. Chacko and Viceira (2005) performed a Monte Carlo simulation to

validate this statement and the accuracy of the approximation, having concluded that (5) understates

the true variance by 0.27%.

It is implicit in (2)-(3) that shocks in precision (Wy) are correlated with shocks in the return of the

risky asset, with correlation given by ρ > 0. From (4), this implies that the instantaneous correlation

between proportional changes in the risky asset's return and variance is given by:

Corrt

(
dvt
vt
,
dSt
St

)
= −Corrt

(
dyt,

dSt
St

)
= −ρdt . (6)

This investment opportunity set incorporates three of the main stylized facts about the variance of the

return of risky assets: the mean reversion property, the �leverage e�ect� property (given by the negative

correlation between return and its variance), and the fact that proportional changes in variance are

higher when variance is high.

2.2 Investor Preferences

It is assumed that the representative investor is not totally sure about the stochastic processes (2)-(3)

that generate the dynamic investment opportunity set. In other words, the uncertainty faced by the

representative investor has two dimensions: risk and ambiguity.

Additionally, it is assumed that the preferences of the representative investor are described by the

stochastic di�erential utility (SDU) function introduced by Du�e and Epstein (1992b) and applied

to asset pricing theory in Du�e and Epstein (1992a). This is a continuous-time form of recursive

utility, analogous to the discrete-time parametrization of Epstein and Zin (1989, 1991), that exhibits

intertemporal consistency, admits Bellman's characterization of optimality, and separates risk aversion

from elasticity of intertemporal substitution.

The utility process that de�nes the SDU function is represented by:

J = Et

 ∞̂
t

f (Cs, Js) ds

 , (7)

where Cs represents current consumption and Js is the continuation utility for the consumption �ow

C, at time t = s, with in�nite time horizon. In our setting, the function f (Cs, Js) is the normalized

5Obtained by taking expectations of the second-order Taylor expansion of vt around θ (Chacko and Viceira (2005)).
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aggregator that generates J , de�ning a SDU function that represents the preferences introduced by

Kreps and Porteus (1978). An explicit closed-form expression for that SDU utility function is not

available.

We assume a unitary elasticity of intertemporal substitution (ψ = 1), because: (i) with ψ = 1

there is an exact solution of the Bellman equation that we will obtain; and (ii) we conclude that the

main analytical and empirical results do not change if ψ 6= 1.6 With ψ = 1, the normalized aggregator

f (C, J) takes the form (e.g, Du�e and Epstein (1992a,b)):

f(C, J) = β (1− γ) J

{
ln (C)− 1

1− γ
ln [(1− γ) J ]

}
, (8)

where γ > 0 is the coe�cient of relative risk aversion and β > 0 is the rate of time preference. If γ = 1,

(8) can be replaced by the standard log-utility representation.

A remark regarding the preference for the timing of the resolution of risk. With the preference

structure of Kreps and Porteus (1978), investors can have preference for early or late resolution of

risk (as well as indi�erence), while the standard additive intertemporal utility function implies that

investors are indi�erent to the temporal resolution of risk. In the framework of Epstein and Zin

(1989), the preference for temporal resolution of risk depends on the relationship between ψ and γ: if

γ > 1
ψ (<,=) investors have preference for early (late, indi�erent) resolution of risk. Our speci�cation

(7) from Du�e and Epstein (1992a), being the continuous-time limit of Epstein and Zin (1989), inherits

this property. However, on the contrary of other streams of literature with Epstein-Zin preferences,

for example, the �long-run risk� literature (from the seminal work of Bansal and Yaron (2004)), we do

not restrict the investor to have preference for early resolution of risk. Two main reasons support this

decision: (i) as our model evolves in a long-run setting, the possibility of the �cost� becoming higher

than the �bene�t� of planning advantages brought by the early resolution of risk (Arai (1997)) should

not be excluded and (ii) there is evidence that investors may have preference for late resolution of risk

(Epstein and Zin (1991)).

2.3 Dynamic Optimization Problem

Ambiguity about the investment opportunity set is studied with robust control (RC) techniques, �rstly

introduced in economics by Hansen and Sargent (1995). The representative investor has a reference

model, but, facing ambiguity about the true model, considers a family of alternative models that are

statistically di�cult to distinguish from his benchmark.

Under the RC approach, two main formulations have been used in the ambiguity related literature:

the �constraint preferences� and the �multiplier preferences�. Under �constraint preferences� (e.g., in

Hansen et al. (2006)), there is a constraint on the magnitude of the allowable perturbations from

the benchmark model. Under �multiplier preferences� (e.g., in Maenhout (2006)), preferences for

robustness are constructed by penalizing deviations from the benchmark model, with higher deviations

being more penalized than smaller ones. Although both settings are related, through the Lagrange

Multiplier Theorem (Hansen and Sargent (2006)), they end up being structurally very di�erent.

6These results for ψ 6= 1 are not presented, for economy of space, but they are available on request. Chacko and
Viceira (2005) present an approximate solution for the Bellman equation that is obtained if ψ 6= 1. That solution
converges to the exact solution when ψ = 1.
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One di�erence is that under the �constraint preferences� RC approach, the speci�cation of the am-

biguity aversion can be based on a rectangular set of priors, which guarantees a dynamically consistent

preference ordering. In those cases, preferences can be represented by the recursive multiple priors

utility (RMPU) speci�cation (Chen and Epstein (2002) and Epstein and Schneider (2003)).7

Additionally, the �constraint preferences� approach enables ambiguity to expand the range of qual-

itative behavior that can be rationalized versus the standard expected utility theory (as pointed out

by Epstein and Schneider (2010)). This contrasts with the �multiplier preferences� approach, which

is observationally equivalent to expected utility theory: it enables reinterpretations of some results

obtained under the expected utility theory, that can be quantitatively more appealing,8 but does not

enlarge the spectrum of qualitative behavior that can be rationalized. In the �multiplier preferences�

RC approach, ambiguity aversion is in practice translated into an enhanced level of risk aversion (as

concluded for optimal dynamic portfolio choice in Maenhout (2004, 2006), Faria and Correia-da Silva

(2010) and Xu et al. (2011)).

In this paper, we adopt a �constraint preferences� RC approach as in Faria and Correia-da Silva

(2012). The investor considers contaminations (alternative models), Ph, around his reference belief,

P , under which processes (2)-(3) evolve. The contaminations are assumed to be absolutely continuous

with respect to P , and, therefore, are equivalently described by contaminating drift processes, h =[
hy hε

]>
, that contaminate the vector of Brownian motions, W =

[
Wy Wε

]>
, associated

with the stochastic processes that generate the risky asset's return and volatility. In an alternative

model, Ph, the Brownian motion is Wh(t) = W (t) +
´ t
0
h (s) ds.9

An upper bound is imposed on the contaminating drift processes:

h>h 6 2η, (9)

where η > 0 is a parameter that can be interpreted as the level of ambiguity. The class of admissible

Markovian drift contaminations satisfying this entropy bound (9) is denoted by H.
Alternative models should be statistically close to the reference model. Otherwise, the agent would

be able to distinguish them and, consequently, would not face ambiguity. This means that η must be

small. Moreover, the bound (9) constrains both the instantaneous time variation and the continuation

value of the relative entropy between the reference belief, P , and any admissible contaminated belief,

Ph. Trojani and Vanini (2004) explain that the set
{
h : h>h ∈ [0 , 2η] , ∀t > 0

}
de�nes a rectangular

set of priors because any process h (and therefore any probability measure Ph) in this set corresponds

to a selection of transition densities from t to t+ dt, t > 0 , such that h>h ∈ [0 , 2η].10

7Rectangularity is the property that allows updating every prior under the recursive multiple priors utility through
a Bayes rule. See Epstein and Schneider (2003) for details about this property. In Hansen and Sargent (2006) there is a
comprehensive discussion of the dynamic consistency issue under the robust control approach.

8For example, as ambiguity aversion translates into a higher e�ective risk aversion, it is a contribution for the
explanation of the equity premium puzzle.

9For tractability reasons, the analysis is restricted to the class of Markov-Girsanov kernels. The absolute continuity
assumption between P and Ph guarantees the equivalence property between the probability measures and, consequently,
that the Cameron-Martin-Girsanov theorem can be applied. Moreover, from this theorem and considering the di�usion
family of models under consideration, all that a probability measure change implies is the change of the drift function
of the stochastic processes.

10In Trojani and Vanini (2004), p. 289, there is a detailed explanation supporting the rectangularity property of
the present set of priors built under the constraint (9), and how this rectangular set of priors can be de�ned in the
k-ignorance model of Chen and Epstein (2002).
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Under an admissible contamination, Ph, the investment opportunity set is described by:
dSt
St

=
(
µ+

√
1
yt
ρhy +

√
1
yt

√
1− ρ2hε

)
dt+

√
1
yt
ρdWy +

√
1
yt

√
1− ρ2dWε

dyt =
[
κ (θ − yt) + σ

√
yth

y
]
dt+ σ

√
ytdWy

(10)

Note that in the �contaminated� investment opportunity set (10), the di�usion component continues

to be driven by the same vector of independent Brownian motions as in (2)-(3).

With Ct, Xt and πt representing the instantaneous consumption, wealth and fraction of wealth

invested in the risky asset, wealth dynamics is given by:

dXt = πtXt
dSt
St

+ (1− πt)Xtrdt− Ctdt.

Considering the dynamics in (10), the intertemporal budget constraint faced by the ambiguous repre-

sentative investor is given by:

dXt =

[
πt

(
µ+

√
1

yt
ρhy +

√
1

yt

√
1− ρ2hε − r

)
Xt + rXt − Ct

]
dt+πtXt

√
1

yt

(
ρdWy +

√
1− ρ2dWε

)
.

(11)

The intertemporal optimization problem has a max-min structure. The investor chooses the con-

sumption �ow, C : [t0,+∞[→ R+, and the fraction of wealth to invest in the risky asset in each

moment, π : [t0,+∞[→ R, that maximize his expected utility (7). For each given choice, in the pres-

ence of multiple possible models, the ambiguity averse investor considers, from the set of alternative

models, the worst-case scenario, i.e., the model that yields the lowest expected utility:

sup
π,C

inf
h∈H

Eht

 ∞̂
t

f (Cs, Js) ds

 , (12)

subject to the contaminated precision and wealth processes in (10) and (11), respectively.

The Bellman equation of this problem is:

0 = sup
π,C

inf
hy,hε

{
f (C, J) +

[
πt

(
µ+

√
1

yt
ρhy +

√
1

yt

√
1− ρ2hε − r

)
Xt + rXt − Ct

]
JX +

+ [κ (θ − yt) + σ
√
yth

y] Jy +
1

2
π2
t

1

yt
X2
t JXX +

1

2
σ2ytJyy + πtXtρσJXy

}
, (13)

where f (C, J) is the normalized aggregator given in (8) and JX , Jy, JXX , Jyy and JXy are partial

derivatives of the value function J (Xt, yt).

Solving for the optimal vector (hy, hε), i.e., for the worst-case contamination, and placing the result

into (13), the Bellman equation of the problem becomes (Appendix 7.1):
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0 = sup
π,C

{
f (C, J) + πt (µ− r)XtJX + rXtJX − CtJX + κ (θ − yt) Jy +

1

2
π2
t

1

yt
X2
t JXX

+
1

2
σ2ytJyy + πtXtρσJXy −

√
2η

√
σ2ytJ2

y + 2σρπtXtJyJX + π2
t

1

yt
X2
t J

2
X

}
. (14)

3 Optimal Consumption and Portfolio Rules

In general, obtaining closed-form solutions under stochastic investment opportunity sets is di�cult.

This di�culty is further enhanced by the presence of ambiguity. In this paper, we follow perturbation

theory under robust control (e.g., Trojani and Vanini (2002)) to describe the solution of the problem

under study. As in Trojani and Vanini (2004), we extend the asymptotic methods in Kogan and Uppal

(2001) from models based on standard expected utility to models with ambiguity. This is allowed

by the homotheticity of the robust control problem (10)-(12), which implies that the value function

that solves the problem and the corresponding optimal consumption and portfolio policies are wealth

scale-invariant.11

The rationale behind the perturbation (asymptotic) method is well described by Trojani and Vanini

(2004): �[...] formulate a general problem, �nd a particular relevant case that has a known solution, and

use this as a starting point for computing the solution to nearby problems�. In our case, as in Trojani

and Vanini (2004), the asymptotic solution of the problem under ambiguity will hold in neighborhoods

of the model with no ambiguity.

The �rst step is to identify a set of parameters that parametrize the problem under study and

speci�c parameter values for which the solution of the value function is known explicitly. Chacko and

Viceira (2005) provided an exact solution for the case in which η = 0 (no ambiguity).

The value function that solves (14) for η = 0 is given by:12

J (Xt, yt) = exp {g0 (yt)}
X1−γ
t

1− γ
, (15)

where g0 (yt) = Ayt +B, with A and B given by

A =

γ (1− γ)

{[
β+κ
1−γ −

ρσ(µ−r)
γ

]
±
√[

β+κ
1−γ −

ρσ(µ−r)
γ

]2
− σ2(µ−r)2[γ(1−ρ2)+ρ2]

γ2(1−γ)

}
σ2 [γ (1− ρ2) + ρ2]

, (16)

B = (1− γ)

(
lnβ +

r

β
− 1

)
+
κθ

β
A . (17)

The sign of the square-root in A is �+� for γ > 1 and �−� for γ < 1 (Appendix 7.2).

11As explained in Trojani and Vanini (2002), studying non-homothetic robust control settings with perturbation
methods is more di�cult. Moreover, Maenhout (2004) points out some reasons to support the homotheticity assumption:
�Although economies exhibit growth, rates of return are stationary. Second, when the scale of the state variables
matters, natural unit invariance of optimal decisions disappears and calibrations have to take this into account. Finally,
homotheticity facilitates aggregation and the construction of a representative agent.� As stated by Maenhout (2004),
preserving homotheticity guarantees that �[...] robustness will no longer wear o� as wealth rises�.

12This expression is valid for γ 6= 1. If γ = 1, the value function is J = ln (Xt).
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Following the rationale above described, we will therefore perturb a benchmark economy in which

η = 0, by considering small positive values of η. In order to obtain the asymptotic expansions of the

optimal policies of the problem under study, we consider J (Xt, yt) = exp
{
g
(
yt,
√

2η
)} X1−γ

t

1−γ and the

�rst-order expansion of g
(
yt,
√

2η
)
around η = 0:

g
(
yt,
√

2η
)

= g0 (yt) + g1 (yt)
√

2η +O2
g

(√
2η
)
, (18)

where O2
g

(√
2η
)
represents the residual of the �rst order expansion. As it is immediate from (18),

g0 (yt) is the speci�cation of g
(
yt,
√

2η
)
for the scenario when there is no ambiguity (η = 0).

Proposition 1 Asymptotic optimal consumption and portfolio policies under ambiguity about the

investment opportunity set dynamics (2)-(3), when γ > ω, where ω = 1− (β+κ)2

(β+κ)2+σ2(µ−r)2+2ρσ(µ−r)(β+κ) ,

are given by:13

Ct = βXt +O2
c

(√
2η
)
, (19)

πt =
1

γ +
√

2η
G0(yt)

[
(µ− r) yt +

(
1− 1

1− γ

√
2η

G0 (yt)

)
σρAyt

]
+O2

π

(√
2η
)
, (20)

with G0 (yt) =

[(
µ−r+ρσA

γ

)2
+
(
σA
1−γ

)2
+ 2σρA(µ−r+ρσA)

(1−γ)γ

]
yt and A is given by (16).

Proof. Appendix 7.3.

The �rst comment on Proposition 1 is that the domain in which the solution is valid depends on

the combination of the level of investor's risk aversion and on the characterization of the investment

opportunity set dynamics (represented by ω). Note also that regarding the investor's preferences for

the temporal resolution of risk, the domain of analysis (γ > ω) includes scenarios where the investor:

has preference for late resolution of risk (ω 6 γ < 1); has preference for early resolution of risk (γ > 1);

or is indi�erent to that timing (γ → 1). Only scenarios where the investor has a strong preference for

late resolution of risk (γ < ω) are excluded.

When there is no ambiguity, η = 0, the optimal consumption and portfolio rules are given by:

Ct = βXt , (21)

πt =
1

γ
(µ− r) yt +

σρ

γ
Ayt , (22)

which are the results in Chacko and Viceira (2005).

Comparing (19) and (21), it is clear that ambiguity has no �rst-order e�ect on the optimal con-

sumption rule (which continues to be to consume a constant fraction β of current wealth). This means

that the income and substitution e�ects on consumption that result from the change in the investment

opportunity set exactly cancel out.

13For γ < ω, the constant A in (16) is a complex number. Therefore, the value function (15) is only valid if γ > ω.
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On the other hand, from (20) and (22), it is immediate to conclude that ambiguity has a �rst-order

impact on portfolio choice. There are novelties regarding existing results in the literature. First, the

optimal allocation to the risky asset is instantaneously impacted by ambiguity, which contrasts with

results in Faria et al. (2009). Secondly, the optimal portfolio rule is a non-linear function of yt, which

di�ers from the linear relationship that holds when there is no ambiguity (e.g., Chacko and Viceira

(2005)) or when ambiguity is studied using RC with �multiplier preferences� (e.g., Maenhout (2004,

2006), Faria and Correia-da Silva (2010) and Xu et al. (2011)).

The structure of the optimal portfolio rule under ambiguity (20) continues to be the sum of two

well-known components (Merton (1973)): (i) myopic demand, in this setting given by µ−r
γ+
√

2η
G0(yt)

yt;

and (ii) intertemporal hedging demand, given by

(
1− 1

1−γ

√
2η

G0(yt)

)
σρA

γ+
√

2η
G0(yt)

yt. Comparing with the optimal

portfolio rule without ambiguity (22), observe that the intertemporal hedging demand vanishes (and,

therefore, the myopic demand becomes optimal) as: the coe�cient of relative risk aversion tends to 1

(γ → 1); investment opportunities are constant (σ = 0) or, being time-varying, it is not possible to

use the risky asset to hedge against those changes (ρ = 0). Notice also that the ratio between myopic

and intertemporal hedging demand is a function of instantaneous precision (yt), contrarily to what

happens when there is no ambiguity (η = 0).

Additionally, without ambiguity, an investor with γ > 1 has a negative intertemporal hedging

demand, and the opposite when ω 6 γ < 1, which is consistent with the �ndings in Chacko and Viceira

(2005). When risk aversion is low (ω 6 γ < 1), the investor is ready to support a worse performance

when precision is low for extra performance when precision is high (recall that ρ > 0). An investor with

high risk aversion (γ > 1) is not willing to accept this trade-o�. With the introduction of ambiguity,

this relation is not so trivial: investors with low risk aversion (γ < 1) that face a su�ciently high level

of ambiguity (high η), have a negative intertemporal hedging demand.14

Note that the myopic (M) and the intertemporal hedging (H) demand can be written as:

πMt (η) = πMt (0)
γ

γ +
√

2η
G0(yt)

, (23)

πHt (η) = πHt (0)
γ
(

1− 1
1−γ

√
2η

G0(yt)

)
γ +

√
2η

G0(yt)

, (24)

where πMt (0) and πHt (0) represent the myopic and intertemporal hedging demand components

without ambiguity aversion. Both ratios π
M
t (η)/πMt (0) and πHt (η)/πHt (0) depend on yt through G0 (yt). It

is clear that G0 (yt) > 0 which, from (23) and (24), implies that the reduction in the optimal risky

asset demand is a positive function of the level of ambiguity of the representative investor (higher η).

The result that ambiguity aversion reduces the demand for the risky asset is the standard result within

the still recent literature on portfolio choice under ambiguity. We extend this result to a setting where

stochastic precision is one of the sources of ambiguity, in a �constraint preferences� RC setting.

14For this to happen when ω 6 γ < 1, it is necessary that γ > 1−
√

2η
G0(yt)

.
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4 Alternative Scenarios

In section 4.1, asymptotically optimal consumption and portfolio rules are derived for the case in which

ambiguity is exclusively about the stochastic process that generates the return of the risky asset. In

section 4.2, the same is done in a scenario where ambiguity is only about the precision process.

4.1 Ambiguity exclusively about the return process

Consider the investment opportunity set described in section 2.1, and the existence of ambiguity

exclusively about the return process. Formally, restrict the possible perturbations to be of the form

h =
[

0 hε
]>

. From (13), the corresponding Bellman equation is given by:

0 = sup
π,C

inf
hε

{
f (C, J) +

[
πt

(
µ+

√
1

yt

√
1− ρ2hε − r

)
Xt + rXt − Ct

]
JX +

+κ (θ − yt) Jy +
1

2
π2
t

1

yt
X2
t JXX +

1

2
σ2ytJyy + πtXtρσJXy

}
. (25)

Observe that the objective function is monotonically increasing in hε. This implies, from (9), that

the worst-case contamination is the corner solution hε = −
√

2η. Introducing this result into (25), the

Bellman equation of the problem when h =
[

0 −
√

2η
]>

becomes:

0 = sup
π,C

{
f (C, J) +

[
πt

(
µ−

√
1

yt

√
1− ρ2

√
2η − r

)
Xt + rXt − Ct

]
JX +

+κ (θ − yt) Jy +
1

2
π2
t

1

yt
X2
t JXX +

1

2
σ2ytJyy + πtXtρσJXy

}
. (26)

Following the same reasoning as in section 3, the optimal portfolio and consumption rules are de-

ducted for the particular case of ambiguity exclusively about the return process.

Proposition 2 Asymptotic optimal consumption and portfolio policies under ambiguity about the

risky asset return process (2), when γ > ω , where ω = 1− (β+κ)2

(β+κ)2+σ2(µ−r)2+2ρσ(µ−r)(β+κ) , are:

Ct = βXt +O2
c

(√
2η
)
, (27)

πt =
1

γ
(µ− r) yt −

√
1− ρ2

√
2η

γ

√
yt +

σρ

γ
Ayt +O2

π

(√
2η
)
, (28)

with A given by (16).

Proof. Appendix 7.3.

The main conclusions from Proposition 1 extend to Proposition 2. The main di�erence is that now

the e�ect of ambiguity on portfolio choice only concerns the myopic demand, as the intertemporal

hedging demand remains equal to σρ
γ Ayt. This is natural because the intertemporal hedging demand
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is driven by the dynamics of stochastic variance. It is, therefore, una�ected by ambiguity about the

return process.

4.2 Ambiguity exclusively about the precision process

To investigate the case in which ambiguity is only about the precision process, it is not appropriate

to consider the investment opportunity set described by (2)-(3). In that case, a contamination of the

precision process would be transmitted to the return process through the assumed correlation between

return and precision. The appropriate setting is the following:

dSt
St

= µdt+

√
1

yt
dWS , (29)

dyt = κ (θ − yt) dt+ σ
√
yt

(
ρdWS +

√
1− ρ2dWε

)
. (30)

Ambiguity is again introduced through Markovian contaminating drift processes. If we allowed any

contamination h =
[
hs hε

]>
satisfying the entropy bound (9), then we would obtain exactly the

same Bellman equation as in section 2.3 (Appendix 7.4). Therefore, as the Bellman equation would

still be given by (14), Proposition 1 would remain valid for this alternative setting. Since now we

want to study the case in which ambiguity is exclusively about the precision process, we will restrict

the contaminations to the precision process, i.e., we will consider h =
[

0 hε
]>

. The investment

opportunity set is now described by:
dSt
St

= µdt+
√

1
yt
dWS ,

dyt =
[
κ (θ − yt) + σ

√
yt (1− ρ2)hε

]
dt+ σ

√
yt

(
ρdWS +

√
1− ρ2dWε

)
,

(31)

and the corresponding intertemporal budget constraint faced by the ambiguous representative investor

is given by:

dXt = [πt (µ− r)Xt + rXt − Ct] dt+ πt

√
1

yt
XtdWS . (32)

The Bellman equation of the optimization problem under this setting is:

0 = sup
π,C

inf
hs,hε

{
f (C, J) + [πt (µ− r)Xt + rXt − Ct] JX +

1

2
π2
t

1

yt
X2
t JXX +

+
[
κ (θ − yt) + σ

√
yt (1− ρ2)hε

]
Jy +

1

2
σ2ytJyy + πtXtρσJXy

}
. (33)

With Jy ≥ 0, which holds at least for small ambiguity levels, the worst-case contamination is the

corner solution hε = −
√

2η. Independently of whether we consider hε = −
√

2η or hε =
√

2η, the

optimal consumption and portfolio rules are as follows.

Proposition 3 Asymptotic optimal consumption and portfolio policies under ambiguity about the
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precision process (30), when γ > ω , where ω = 1− (β+κ)2

(β+κ)2+σ2(µ−r)2+2ρσ(µ−r)(β+κ) , are given by:

Ct = βXt +O2
c

(√
2η
)
, (34)

πt =
1

γ
(µ− r) yt +

σρ

γ
Ayt +O2

π

(√
2η
)
, (35)

with A given by (16).

The main conclusion from Proposition 3 is that ambiguity about the precision process has no

�rst-order impact on optimal consumption and portfolio choice.

Overall, optimal portfolio rules were deducted for the scenarios where there exists ambiguity: about

the dynamics of both the return and its precision (Proposition 1), only about the dynamics of the return

(Proposition 2); and only about the dynamics of precision (Proposition 3). The conclusion is that, from

a theoretical point of view, the relevant channel through which ambiguity impacts portfolio decisions

is the return of the risky asset. Ambiguity about the precision process is only relevant if, through the

assumed correlation between return shocks and precision shocks, it also induces ambiguity about the

return process: this happens under the setting (2)-(3), but not under the setting (29)-(30). In the next

section we evaluate the empirical relevance of those �ndings.

5 Simulation

Chacko and Viceira (2005) found that, calibrating their model to long-run U.S. data, the optimal

intertemporal hedging demand is empirically small. The same conclusion was reached by Liu (2007).

This suggests that the �risk dimension� of stochastic variance is empirically not very relevant to dynamic

portfolio choice. However, Chacko and Viceira (2005), in their concluding remarks, acknowledged that

an important caveat of their analysis is that they have counterfactually assumed that investors observe

variance and take as true the empirical estimates of the parameters of the variance process.

Following this lead, we have generalized their model to account for ambiguity about the stochastic

investment opportunity set. As a result, the �myopic demand� and the �intertemporal hedging demand�

became ambiguity-adjusted.

Our simulation suggests that the ambiguity impact on the allocation to the risky asset has a relevant

empirical dimension. However, this e�ect is essentially due to ambiguity about the return process. The

impact of ambiguity about the variance process is empirically very low.

The reference parameter values used in the simulation are those estimated by Chacko and Viceira

(2005), based on monthly excess stock returns on the CRSP value-weighted portfolio over the T-Bill
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rate from January 1926 through December 2000:

µ− r = 0.0811,

κ = 0.3374,

θ = 27.9345, (36)

σ = 0.6503,

ρ = 0.5241,

r = 0.015,

β = 0.06.

From (5), the expected standard deviation of returns is 19.1314%.

Implications of ambiguity on the optimal allocation to the risky asset (Proposition 1) are exempli�ed

in Table 1. The �rst column presents results for the scenario without ambiguity. The other three

columns represent scenarios with three arbitrary levels of ambiguity: η = 0.005, 0.01, 0.02. Recall

that alternative models have to be statistically close so that the investor is ambiguous about the

reference model. This implies small η values. In Trojani and Vanini (2004), two arbitrary values for

η are used (0.005, 0.01) while the value implied by all calibrations in Gagliardini et al. (2009) is lower

than 0.0136.15

Simulations are run for di�erent levels of risk aversion (γ = 0.75, 1, 2, 4, 20, 40), assuming unit

elasticity of intertemporal substitution (ψ = 1). In panel A, we show the mean allocation to the risky

asset (percentage of wealth). In panel B, the intertemporal hedging demand is shown as a percentage

of the myopic demand. In panels C and D, the ambiguity e�ect is explicitly calculated as a percentage

of total risky asset demand and myopic demand.

15Those values for η can be taken as a reference without introducing any kind of bias in our analysis. This is because,
as explained in section 2.3, the di�usion dimension of �contaminated� processes is unchanged vs. non-contaminated
processes (only the drift functions are a�ected).

16



Table 1: Ambiguity impact on optimal risky asset demand (Proposition 1).

Note 1 - Panel A: πθ = E [πt]× 100, with E (yt) = θ; Panel B:

(
1− 1

1−γ

√
2η

G0(E(yt))

)
σρA

(µ−r) × 100, with E (yt) = θ; Panel C:[
(20)
(22)
− 1
]
× 100, with E (yt) = θ; Panel D:

 γ

γ+

√
2η

G0(E(yt))

− 1

× 100, with E (yt) = θ;

Note 2 - ω = 0.14 < 0.75: domain of Proposition 1 is guarantied.

Results presented in Table 1 are consistent with comments in section 3 and show that ambiguity is

empirically relevant: even for a low level of ambiguity (second column in Table 1), ambiguity implies

a 20% decrease of the mean optimal demand of the risky asset (panel C). Consider, for example, a

risk-averse investor, with γ = 2, that is ambiguity-neutral. His mean optimal allocation to the risky

asset corresponds to 111.4% of his wealth. If this investor becomes ambiguity averse, for example,

with η = 0.01, his mean optimal allocation to the risky asset declines to 82,8% of his wealth. These

�ndings can contribute to the explanation of the so called ��ight to quality� e�ect (stylized fact in

�nancial markets): when investors, for some reason, become more �nervous� and uncertain about

market conditions, they reduce exposure to risky assets and invest in less risky or riskless assets.

Panel A in Table 1 shows that the demand for the risky asset is decreasing with risk aversion, γ,

and with the level of ambiguity, η. Since the long-term expected return on wealth is measured by

πθ (µ− r) + r, it is a decreasing function of both risk aversion and the level of ambiguity.
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Figure 1: Long-term expected return on wealth as a function of ambiguity and risk aversion.

Moreover, the higher the level of ambiguity and the level of instantaneous volatility (inverse of

precision) the higher is the impact from ambiguity. This is represented in Figure 2, where it is also

evident that the ambiguity e�ect through the relevant support of precision (or variance) has a non-

linear nature.

Figure 2: Ambiguity e�ect as a function of instantaneous volatility

Note 1 - Volatility understood as variance vt, computed from the level of precision yt using (5);

Note 2 - Simulation with γ = 4.

These �ndings suggest that the intensity, i.e., the speed and depth, of the asset reallocation implied

in the ��ight to quality� phenomena should increase with the level of ambiguity and of instantaneous

volatility. This is intuitive: in an anxious market environment as the one following Lehman Brothers

collapse in September 2008 (which Blanchard (2009) suggestively named as �Knight time�), during

which the VIX index16 reached its historical maximum of 80.86% (20th November, 2008), the speed

and volumes of risky asset �sell-o�� trades were much higher than in stable market conditions.

Additionally, as pointed out in section 3, the ratio between intertemporal hedging demand and

16The VIX Index from CBOE is probably the most used volatility index, both in the literature and in the industry.
It measures the one-month implied volatility in the S&P 500 Index option prices. For full details on the VIX Index
construction methodology please see http://www.cboe.com/micro/vix/.
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myopic demand becomes a function of precision when ambiguity is considered. This has an intuitive

interpretation: the higher the level of instantaneous volatility, everything else constant, the more the

investor is concerned about the impact from volatility changes in his intertemporal utility and, being

ambiguous about the process that drives volatility, the higher is the optimal hedging demand. This

is graphically highlighted in Figure 3, where it is also clear that the dimension of this adjustment is

empirically small.

Figure 3: Hedging Demand vs Myopic Demand as a function of instantaneous volatility

Note 1 - Volatility understood as variance vt, computed from the level of precision yt using (5);

Note 2 - Simulation with γ = 4.

Panel B reports estimates of the intertemporal hedging demand, measured as a ratio of myopic

demand. Again, results show that ambiguity reinforces the e�ect of risk aversion: the higher the

ambiguity and risk aversion the higher the relative importance of the intertemporal hedging demand.

However, the intertemporal hedging demand is always small - even for a highly risk and ambiguity

averse investor (γ = 40 , η = 0.02). The novelty with ambiguity is that for low risk averse investors that

face a high level of ambiguity (e.g., γ = 0.75 , η = 0.02), the intertemporal hedging demand becomes

negative. This con�rms the predictions highlighted in section 3. With no ambiguity or moderate levels

of ambiguity, the intertemporal hedging demand is positive when γ < 1 and negative when γ > 1.

The fact that intertemporal hedging demand is empirically small, even for higher levels of ambiguity,

means that ambiguity impacts optimal portfolio decision essentially through the myopic component

of demand. This is con�rmed by the results disclosed in Panels C and D. This has a clear economic

meaning and provides an answer to the research question addressed in this paper: even accounting

for ambiguity about the stochastic volatility process, it is found that the optimal hedging demand

required by investors for protection against adverse changes in volatility is still very low. Investors are

essentially focused in the short term risk-return characteristics of the risky asset (myopic dimension),

and stochastic volatility has low relevance for optimal intertemporal portfolio decisions: this has been

found under settings were uncertainty is exclusively risk (for example in Chacko and Viceira (2005)

and Liu (2007)) and we extend the conclusion for a setting where uncertainty also has an ambiguity

dimension.
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Moreover, recalling conclusions from section 4.2, this setting (Table 1) is the only one where ambi-

guity about stochastic volatility process impacts optimal portfolio decisions.

At last, as a �cross-check� test, the scenario with ambiguity exclusively about the risky asset return

process (Proposition 2) was simulated, con�rming its empirical relevance.

Table 2: Ambiguity impact on optimal risky asset demand (Proposition 2).

Note 1 - Panel A: πθ = E [πt]× 100, with E (yt) = θ; Panel B:
[

(28)
(22)
− 1
]
× 100, with E (yt) = θ;

Note 2 - ω = 0.14 < 0.75: domain of Proposition 2 is guarantied.

The comparison of results in Panel B of Table 2 with those in Panel C of Table 1 leads to an

important �nding: when ambiguity is concentrated in the return process (Table 2), its impact on the

optimal demand for the risky asset is higher.

Our conclusion that uncertainty about stochastic volatility has low impact on portfolio decisions

may not be robust to the introduction of multiple risky assets (multivariate stochastic variance and

covariance setting). In such a setting, Buraschi et al. (2010) showed that joint features of volatility and

correlation dynamics play an important role in optimal portfolios. For example, they estimate that, in

a univariate stochastic volatility model, total hedging demand for S&P 500 futures of investors with

γ = 8 and investment horizon of 10 years is 4.8% of the myopic demand. This is consistent with our

results in Table 1. However, in a model with three risky assets, the estimated total hedging demand

for S&P500 futures jumps to 28% of myopic demand, with 11% and 17% of volatility and correlation

hedging demand respectively.

Interestingly, Buraschi et al. (2010) also �nd that the optimal hedging demand against correlation

risk typically dominates hedging against volatility risk: this is, at least partially, explained by the

higher persistence of correlation risk versus that of volatility risk. In a study about the relation

between correlation risk and the cross-section of hedge fund returns, Buraschi et al. (2012) �nd evidence

that correlation risk is the most signi�cant risk factor for the explanation of hedge fund returns.

Those �ndings suggest that correlation, more than volatility, is the relevant uncertainty factor to be

�controlled� and therefore commanding investors intertemporal hedging demand.
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6 Concluding Remarks

We study optimal dynamic consumption and portfolio choice with stochastic variance, by introducing

ambiguity about the stochastic processes that generate the dynamic investment opportunity set.

Long-horizon investors with recursive preferences, as de�ned by Du�e and Epstein (1992b) with

Kreps and Porteus' (1978) speci�cation, have two assets to invest in, a risk-free asset and a risky asset.

The investor considers a reference model for the data generating processes but, not being totally sure

about it, takes into account a set of statistically close models (with the relative entropy between models

being bounded). Ambiguity aversion in the spirit of Gilboa and Schmeidler (1989) implies that investor

will consider the worst possible alternative model, i.e., the one associated with the lowest expected

utility. Optimal dynamic policies under ambiguity are deducted by making use of perturbation theory

techniques for robust control problems.

The main conclusions of this paper concern the impact on optimal dynamic policies from ambi-

guity about the data generating processes, both when ambiguity is simultaneously about the return

and volatility processes and when it is exclusively about one of them. In all scenarios, the optimal

consumption policy is to consume a constant fraction of wealth. It is found that ambiguity does not

impact the optimal consumption-wealth ratio, at least until a �rst order approximation with respect

to the level of ambiguity.

Conversely, ambiguity about the data generating processes reduces the optimal demand for the

risky asset, with that e�ect being non-uniform in the variance domain. The same happens when there

is ambiguity only about the risky asset return. When ambiguity is exclusively about the stochastic

variance process it is found that there is no impact on the optimal portfolio rule. The conclusion is

that ambiguity about the stochastic variance process is only relevant as long as, through a speci�c

correlation structure, it also induces ambiguity about the return stochastic process.

Making use of long-run US data, we measure the empirical dimensions of those e�ects. The �rst

conclusion is that ambiguity about the stochastic processes driving the investment opportunity set

is empirically relevant for portfolio decisions. This can be a contribute for the explanation of the

��y to quality� stylized fact in �nancial markets. Our simulation suggests that this highly relevant

ambiguity e�ect on the risky asset demand acts mainly through the myopic component. The �rst

implication is the con�rmation that, under our setting and simulation, ambiguity about the risky

asset return process is empirically much more relevant than ambiguity about stochastic volatility

process. The second implication is that, even accounting for ambiguity about the stochastic volatility

process, it is found that the optimal hedging demand required by investors for protection against

adverse changes in volatility is still very low. Investors are essentially focused in short term risk-return

characteristics of the risky asset (myopic dimension), and stochastic volatility has low relevance for

intertemporal portfolio decisions: this has been found under settings were uncertainty is exclusively

risk (e.g. in Chacko and Viceira (2005) and Liu (2007)) and we extend that conclusion for a setting

where uncertainty also has an ambiguity dimension.

Our conclusion that uncertainty about stochastic volatility has low impact on portfolio decisions

may change signi�cantly if a multivariate stochastic variance setting (multiple risky assets) is consid-

ered, as Buraschi et al. (2010) shows: the authors �nd that hedging demands are typically four to

�ve times higher than those of models with constant correlations or single-factor stochastic volatility.
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Moreover, Buraschi et al. (2010) also �nd that correlation risk hedging demand is typically higher

than volatility risk demand suggesting that correlation, more than volatility, is the crucial uncertainty

factor to hedge in an intertemporal optimization portfolio problem.

An interesting research topic for future work is therefore the consideration of ambiguity about

stochastic variance-covariance dynamics in a multivariate model for optimal intertemporal portfolio

choice.

7 Appendices

7.1 Bellman Equation (14)

De�ne Λ as the di�usion matrix of state variables yt and Xt, according to processes in (10) and (11):

Λ =


σ
√
yt 0

ρπt
√

1
yt
Xt πt

√
1
yt
Xt

√
1− ρ2

 . (37)

Minimization of (13) with respect to the vector h gives (see, for e.g., Anderson et al. (1998) p. 22): hy

hε

 = −
√

2η√[
Jy JX

]
ΛΛ>

[
Jy JX

]>Λ>

 Jy

JX

 . (38)

Replacing (37) in (38), the vector of optimal contaminating drifts is obtained and given by:

 hy

hε

 = −
√

2η√
J2
yσ

2yt + 2JyJXσρπtXt + J2
Xπ

2
t

1
yt
X2
t


σ
√
ytJy + ρπt

√
1
yt
XtJX

πt
√

1
yt
Xt

√
1− ρ2JX

 .
Substituting this result into (13), after some algebra, gives (14).

�

7.2 Sign of the square-root in (16)

Since ψ = 1, as γ → 1, the utility representation (8) converges to the log-utility representation. The

optimal portfolio rule without ambiguity (η = 0), given by (22), in the special case of log-utility

(γ = ψ = 1) is well-known (Merton (1969, 1971, 1973)):

πt = (µ− r) yt ,

i.e., the intertemporal hedging demand component disappears (if ψ = γ = 1, then A = B = 0). It is

therefore necessary to guarantee that lim
γ→1

A = 0, which implies that lim
γ→1

B = 0. The limit of (22) as
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γ → 1 is:

lim
γ→1

πt = (µ− r) yt +

(
lim
γ→1

A

)
ρσyt .

From (16), lim
γ→1

A is:

lim
γ→1

A =
(β+κ)± lim

γ→1
(1−γ)γ

√
[ ρσ(µ−r)γ − β+κ1−γ ]

2
−σ

2(µ−r)2[γ(1−ρ2)+ρ2]
γ2(1−γ)

σ2 . (39)

If γ → 1+, i.e., γ > 1, then (1− γ) < 0 and the discriminant of the square root in (39) is always > 0.

By assumption, β + κ > 0, which implies that, in order to have lim
γ→1+

A = 0, the �+� sign must be

considered.

The same rationale implies that when γ < 1, the �-� sign of the square root guarantees that

lim
γ→1−

A = 0 (it can be easily shown that the discriminant of the square root in (39) is positive as γ

approaches 1 from below).

�

7.3 Optimal Consumption and Portfolio rules

7.3.1 Domain γ > ω

The domain of analysis is set so that A in (16) is a real number, i.e., its discriminant is non-negative.

Consequently the condition to be satis�ed is[
ρσ (µ− r)

γ
− β + κ

1− γ

]2
>

σ2 (µ− r)2
[
γ
(
1− ρ2

)
+ ρ2

]
γ2 (1− γ)

. (40)

For γ > 1 it is straightforward to conclude that
[
ρσ(µ−r)

γ − β+κ
1−γ

]2
>

σ2(µ−r)2[γ(1−ρ2)+ρ2]
γ2(1−γ) , and therefore

(40) is always true.

For γ < 1, (40) is true as long as:

γ

1− γ
>

σ2 (µ− r)2

(β + κ)
2 +

2ρσ (µ− r)
(β + κ)

⇔ γ >
σ2 (µ− r)2 + 2ρσ (µ− r) (β + κ)

(β + κ)
2

+ σ2 (µ− r)2 + 2ρσ (µ− r) (β + κ)

⇔ γ > ω,

where ω = 1− (β+κ)2

(β+κ)2+σ2(µ−r)2+2ρσ(µ−r)(β+κ) . Note that ω < 1.

�
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7.3.2 Optimal rules (19) and (20)

Considering the Bellman equation (14) and a value function with the form J (Xt, yt) = exp
{
g
(
yt,
√

2η
)} X1−γ

t

1−γ ,

the FOC with respect to πt gives:

πt =
1

γ +
√

2η
G(πt,yt)

[
(µ− r) yt +

(
1− 1

1− γ

√
2η

G (πt, yt)

)
σρyt

∂g

∂y

]
, (41)

where:

G (πt, yt) =
π2
t

yt
+

2σρπt
∂g
∂yt

1− γ
+
σ2yt

(
∂g
∂yt

)2
(1− γ)

2 , (42)

i.e., optimal portfolio rule under ambiguity is the solution of an implicit function in πt. In order to

provide an approximate solution for this optimization problem, consider the �rst order expansions in
√

2η of the functions g and πt. Expansion of g is given in (18) and expansion of πt is given by:

π
(
yt,
√

2η
)

= π0 (yt) + π1 (yt)
√

2η +O2
π

(√
2η
)
, (43)

where O2
π

(√
2η
)
is a symbol representing terms of higher order in

√
2η. π0 (yt) represents the solution

when there is no ambiguity (η = 0), being given by (22). With no ambiguity, the value of G (πt, yt) is:

G0(yt) =

[(
µ− r + ρσA

γ

)2

+

(
σA

1− γ

)2

+
2ρσA (µ− r + ρσA)

(1− γ) γ

]
yt.

To �nd π1 (yt), since we are neglecting terms of higher order in
√

2η, we can consider the approxi-

mation G0 (yt) instead of G (πt, yt). Therefore, the approximate optimal porfolio choice can be written

as in (20).

Regarding the optimal consumption rule (19), computations are more straightforward. Considering

the Bellman (14) and the aggregator (8), the FOC with respect to variable Ct is simply:

fC = JX ,

where fC is the gradient of the aggregator (8) with respect to consumption. The approximate optimal

portfolio rule is Ct = βXt, not depending on the ambiguity parameter η.

�

7.3.3 Optimal rules (27) and (28)

Considering the Bellman equation (26) and a value function with the form J (Xt, yt) = exp
{
g
(
yt,
√

2η
)} X1−γ

t

1−γ ,

the FOC with respect to πt yields:

πt =
1

γ
(µ− r) yt −

√
1− ρ2

√
2η

γ

√
yt +

σρ

γ

∂g (y)

∂y
yt. (44)
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As for the general case in section 3, following perturbation theory, the function g is expanded in
√

2η

to �rst order. Expansion of function g is given in (18). Recalling from (18) that g0 = Ayt + B, with

A and B given by (16) and (17), coincides with g when there is no ambiguity, and going back to (44),

the asymptotic expansion for the optimal rule under ambiguity (28) is immediately obtained.

Regarding the optimal consumption rule (27), considering the Bellman (26) and the aggregator (8),

the FOC with respect to variable Ct is again given by:

fC = JX ,

where fC is the gradient of the aggregator (8) with respect to consumption. The asymptotic optimal

portfolio rule is therefore given by:

Ct = βXt +O2
c

(√
2η
)
,

which is (27).

�

7.4 Bellman Equation for general contamination in section 4.2

From (29)-(30), for any admissible contamination h =
[
hs hε

]>
, following the same steps as

in section 2.3 the investment opportunity set and the intertemporal budget constraint faced by the

ambiguous investor are deducted.

The corresponding Bellman equation is given by:

0 = sup
π,C

inf
hs,hε

{
f (C, J) +

[
πt

(
µ+

√
1

yt
hs − r

)
Xt + rXt − Ct

]
JX +

1

2
π2
t

1

yt
X2
t JXX +

+
[
κ (θ − yt) + σ

√
ytρh

s + σ
√
yt (1− ρ2)hε

]
Jy +

1

2
σ2ytJyy + πtXtρσJXy

}
. (45)

Following the same approach as in appendix 7.1, Ξ represents the di�usion matrix of state variables

yt and Xt in their contaminated processes:

Ξ =


σ
√
ytρ σ

√
yt (1− ρ2)

πt
√

1
yt
Xt 0

 . (46)

The minimization of (45) with respect to the vector h gives: hs

hε

 = −
√

2η√[
Jy JX

]
ΞΞ>

[
Jy JX

]>Ξ>

 Jy

JX

 . (47)
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Replacing (46) in (47), the vector of optimal contaminating drifts is obtained and given by:

 hs

hε

 = −
√

2η√
J2
yσ

2yt + 2JyJXσρπtXt + J2
Xπ

2
t

1
yt
X2
t


σ
√
ytρJy + πt

√
1
yt
XtJX

σ
√
yt
√

1− ρ2Jy

 .
Substituting this result into (45), after some algebra, gives (14).

�
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