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Abstract

We study an in�nite-period dynamic predation model in which a dominant �rm can either

accommodate a weak rival or drive it out of the market. When the weak rival exits a new rival �rm

is born with some positive probability. We characterize the Markov perfect equilibria of the model

and show that predation is an equilibrium strategy only when it is accompanied by a commitment by

the dominant �rm to also deter all future entry into the market. Predation is more pro�table than

accommodation for the dominant �rm and may bene�t consumers if they are relatively impatient

and if the probability that a new rival will be born once the existing weak rival exits is high.
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1 Introduction

Predatory pricing involves an allegation that a dominant �rm has intentionally charged a low price in

order to force a weaker rival �rm to exit the market. This type of allegation is highly controversial.

First, some scholars associated with the Chicago school, like Bork (1978, p. 154) claim that predatory

pricing is �a phenomenon that probably does not exist.�1 Indeed, the Supreme court of the U.S. adopted

a similar view in its 1986 decision on Matsushita v. Zenith and wrote that �predatory pricing schemes

are rarely tried, and even more rarely successful.�2 On the other hand, other scholars like Broadly,

Bolton, and Riordan (2000) and Edlin (2010) �nd evidence for the existence of predatory pricing in a

variety of industries.

One reason for Bork�s claim that predatory pricing is not pro�table (and hence rarely exists)

is that if entry is relatively easy, then following the prey�s exit, the dominant �rm will face a new

entrant and will therefore be unable to raise its prices and recoup the loses it incurred during the

predatory phase. This intuition, however, ignores the fact that whether new entry actually occurs

during the recoupment period depends on the entrant�s expectation regarding the dominant �rm�s

future competitive behavior. Edlin (2010) claims that if a potential entrant expects the dominant �rm

to be aggressive and try to drive him out of the market once it enters, then it may prefer to stay out

of the market altogether. Yet, if the dominant reacts to new entry with an aggressive behavior, then

where is the recoupment of its loses during the original predatory phase? Clearly, if a dominant �rm

constantly needs to �ght new entry with low prices, then it will be unable to ever recoups its loses

from predatory behavior and hence it may not engage in predaory behavior in the �rst place. These

arguments imply that in order to analyze the incentives of a dominant �rm to engage in predatory

behavior, one needs to consider a fully dynamic model since the dominant �rm�s incentive to engage in

predatory behavior in any given period and the potential entrant�s incentive to enter depend on how

the game unfolds in future periods.

A second reason why predatory pricng is highly controversial is that some scholars argue that

1Easterbrook (1981) raises ssimilar doubts.
2Matsushita Elec. Indus. Co. v. Zenith Radio Corp., 475 U.S. 574, 589 (1986).
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predatory pricing is likely to harm consumers since it enbales a dominant �rm to drive a rival out of

the market. Other scholars however point out that while the low price during the predatory phase are

a sure thing (i.e., a �bird in hand,�the harm to consumers in the long run is only speculative since the

prey may actually stay in the market after all, and even if it exits, the dominant �rm may be unable to

raise prices due to the threat of new entry. Indeed, in the U.S., Judge Breyer wrote in his decision on

the Barry Wright Corp. v. ITT Grinnell Corp. case that �[T]he antitrust laws very rarely reject such

bene�cial �birds in hand�for the sake of more speculative (future low-price) �birds in the bush��.3 The

upshot then is that it is not clear if predatory pricing is feasible and if it is feasible whether it harms

consumers.

To address these questions, we consider an in�nite period model in which a dominant �rm faces

a weak rival and if it drives it out of the market, it faces new potential entry in every future period. We

show that the model admits multiple equilibria. In one equilibrium the weak rival expects the dominant

�rm to accommodate entry and hence it enters. The dominant �rm cannot pro�tably deter entry since

it anticipates that future entrants will enter as they expect the dominant �rm to accommodate them.

As a result the dominant �rm can never recoup its losses from predation so it never engages in predatory

prices. As a result the entrant�s belief that the dominant �rm will accommodate entry is vindicated.

Predation can also be an equilibrium strategy provided that the entrant anticipates that the dominant

�rm will also �ght new entry in all future periods. As a result, weak rivals will stays out of the market

and hence once the dominant �rm preys once, it becomes a monopoly forever and hence is able to

recoup its loses from engaging in predatory behavior. Moreover, we also show that predation may

actually bene�t consumers provided that the discount factor is su¢ ciently large and the threat of new

entry once the prey exits is su¢ ciently.

[Literature review to be added]

3Barry Wright Corp. v. ITT Grinnell Corp., 724 F.2d 227, 234 (1st Cir. 1983).
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2 The model

Consider an in�nite-period model with two price-setting �rms that produce a homogenuous product

and face a two-step demand function, illustrated in Figure 1: consumers wish to buy a �xed quantity,

which we normalize to 1, and are willing to pay �h for the �rst Q units and �` < �h for the remaining

1�Q units.4

Figure 1: The demand function

Firm 1 is a dominant �rm and has the capacity to serve the entire market. Firm 2 by contrast

has a limited capacity, which enables it to serve only a fraction s < Q of the market. To simplify the

exposition, we normalize the marginal costs of both �rms to 0 and also normalize the �xed cost of �rm

1 to 0. These normalizations do not a¤ect our qualitative results. Unlike �rm 1, �rm 2 does incur a

�xed cost F in every period in which it operates in the market. Firm 2 can avoid the �xed cost F only

by exiting the market, but then it dies, and a new �rm 2 is born in the next period with probability 
.

If a newborn �rm 2 enters the market, it pays a one time entry cost E which is in addition to its �xed

cost F .

The timing is as follows: at the beginning the �rst period, �rm 1 sets a price, p1. Given p1,

�rm 2 either chooses to operate in the market and sets its own price p2, or it exists the market. If �rm

2 stays in the market, the strategic interaction between the two �rms repeats itself in the next period:

4For instance, imagine that there is a continuum of consumers of mass 1, each of whom is interested in buying a single
unit. A mass Q of consumers have a high willingness to pay �h and a mass 1�Q of consumers have a low willingness to
pay �`.
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�rm 1 sets p1, and �rm 2 either stays in the market and sets p2 or it exits. If �rm 2 exits in any period,

then it dies, and �rm 1 serves the entire market at p1. In the next period, a new �rm 2 is born with

probability 
. If a new �rm 2 is not born, then �rm 1 operates in the market as a monopoly, but in

the next period, a new �rm 2 is again born with probability 
. If a new �rm 2 is born, then �rm 1 sets

a price p1, and given p1, the newborn �rm 2 either enters the market, pays the entry cost E, and sets

a price p2, or it stays out of the market. In the latter case, �rm 1 serves the entire market at p1. The

newborn �rm dies if it did not enter, and in the next period a new �rm 2 is born with probability 
.

This sequence of events repeats itself in all periods.5 We assume that all parameters (demand, cost,

and the probability that a new �rm 2 is born) are the same across all periods.

Notice that when �rm 2 decides to operate in the market, it enjoys a second-mover advantage

and hence sets p2 just below p1 and sells up to its capacity s. Firm 1 then serves the rest of the market,

which is either 1� s if p1 � �` or Q� s if �` < p1 � �h. On the other hand, if �rm 2 stays out of the

market or is not born at all, �rm 1 serves the entire market at a price p1 and its sales are 1 if p1 � �`

and Q if �` < p1 < �h. Consequently, the per-period pro�ts of the two �rms are:

�1 =

8>>>>>><>>>>>>:

Qp1 if �rm 2 is out of the market and �` < p1 � �h,

p1 if �rm 2 is out of the market and p1 � �`,�
Q� s

�
p1 if �rm 2 is in the market and �` < p1 � �h,

(1� s) p1 if �rm 2 is in the market and p1 � �`,

(1)

and

�2 =

8>>><>>>:
0 if �rm 2 stays out of the market,

s (p1 �ACO) if �rm 2 just enters the market,

s (p1 �ACI) if �rm 2 stays in the market,

(2)

where ACO � F+E
s is the average cost of �rm 2 when it just enters the market, i.e., when it was

initially �OUT�of the market, and ACI � F
s is its average cost when it is already �IN�the market.

5We assume that �rm 1 chooses its price before �rm 2 in order to avoid a Bertrand outcome that would arise if both
�rms were to choose prices simultaneously. Our results can be generalized to a setting where the two �rms produce
di¤erentiated products and compete by simultaneously setting prices.
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The objective of each �rm is to maximize the discounted sum of its pro�ts. The intertemporal discount

factor is �.

In what follows we will maintain the following assumptions about the demand and cost para-

meters:

Assumption 1: Q�h > �`

Assumption 2: �` > (Q�s)�h
1�s

Assumption 3: �` � ACO

Assumption 1 implies that if �rm 1 operates alone in the market, it will prefer to set a price of

�h and earn a pro�t of Q�h rather than set a price of �` and earn a pro�t of �`; in other words, �h

is a �monopoly�price. Absent Assumption 1, �rm 1 will never set a price equal to �h. Assumption 2

ensures that if �rm 1 chooses to accommodate �rm 2, it would set a price of �` and make a pro�t of

(1� s)�`, rather than set a price of �h and make a pro�t of
�
Q� s

�
�h. Recalling that ACO > ACI ,

Assumption 3 ensures that �rm 2 wishes to operate in the market when �rm 1 sets the accommodation

price �`.

Together, Assumptions 1 and 2 imply that the equilibrium price is lower when �rm 2 competes

with �rm 1 than when �rm 1 acts as a monopoly. Moreover, these assumptions imply that monopoly

behavior by �rm 1 leads to a deadweight loss since a fraction of the demand, 1 � Q, is not served.

From a welfare perspective then, predatory behavior by �rm 1 has a mixed e¤ect on consumers: in the

short run, it bene�ts consumers by leading to low predatory prices, but in the long run, it may hurt

consumers since once �rm 2 exits, a new �rm 2 may not be born immediately and during this time,

�rm 1 will charge a high monopoly price.

3 The equilibria

We restrict attention to Markov strategies and solve for the Markov Perfect Equilibria (MPE) in our

model. We begin in Subsection 3.1 with some de�nitions and preliminary observations. In Subsection
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3.2, we solve for the limit prices that �rm 1 needs to set when it wishes to keep �rm 2 out of the

market, and in Subsection 3.3, we fully characterize the set of MPE in our model.

3.1 Markov strategies and limit prices

A Markov strategy is a map from the set of payo¤-relevant states into actions. In our model there are

3 payo¤-relevant states: (i) I which corresponds to the case where �rm 2 is already �IN�the market,

(ii) O which means that �rm 2 was just born and hence was �OUT�of the market in the last period,

and (iii) M which corresponds to the monopoly case - �rm 2 was �OUT� of the market in the last

period and a new �rm 2 was not born in the current period.

A Markov strategy for �rm 1 is a map from the set of payo¤ relevant states, fI;O;Mg, into a

price, p1. As mentioned earlier, �rm 2 is a second mover and hence sets p2 just below p1 whenever it

chooses to operate in the market. This implies in turn that a Markov strategy for �rm 2 is a mapping

from fI;O;Mg and �rm 1�s price into a decision to either operate in the market and undercut p1

slightly, or stay out of the market in which case it dies. A Markov Perfect Equilibrium (MPE), is a

pair of Markov strategies which are mutual best-responses.

In state M , �rm 1 is a monopoly and given Assumption 1, it will set p1 = �h and sell Q units.

In states I and O, �rm 2 is either already in the market or is just born and �rm 1 must decide whether

to accommodate it. There are therefore 4 possible equilibrium con�gurations, or regimes, that can

arise: AA, DA, AD, and DD. Regime AA corresponds to the case where �rm 1 �Accommodates��rm

2 both when it is already in the market (state I) as well as when it is �rst born (state O). In regime

AD, �rm 1 �Accommodates�an existing �rm 2 (state O), but �Deters�a newborn �rm 2 (state O). In

regime DA, �rm 1 �Deters�an existing �rm 2 (state I), but �Accommodates�a newborn �rm 2 (state

O). Finally, in regime DD �rm 1 �Deters��rm 2 irrespective of whether it is already in the market or

is just born.6

To characterize the equilibrium prices in each regime, notice that Assumption 2 implies that

6We will use the word �Deter�to refer to both the preemption of �rm 2 when it is just born as well as to the predation
of �rm 2 when it is already in the market.
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�rm 1 should set p1 = �` whenever it chooses to accommodate �rm 2 (i.e., it plays �A�). Using

equation (2), �rm 2�s resulting discounted payo¤ in state ! under regime � is given by

V �! =

8>>><>>>:
s(�` �ACO) + �V �I ; ! = O, � = AA;DA,

s(�` �ACI) + �V �I ; ! = I, � = AA;AD,

0; otherwise.

(3)

The top line in (3) corresponds to the case where �rm 2 is initially �OUT� of the market, but is

accommodated when it just enters (regimes �A). The middle line corresponds to the case where �rm

2 is already �IN� the market and is accommodated when it is in (regimes A�). The last line in (3)

corresponds to the case where �rm 2 stays out of the market, in which case it dies, and hence its payo¤

is 0. Using equation (3), we get

V AAI = V ADI =
s(�` �ACI)

1� � ; (4)

V AAO = s(�` �ACO) + �
s(�` �ACI)

1� � ; (5)

V DAO = s(�` �ACO); (6)

and

V DAI = V ADO = V DDI = V DDO = 0: (7)

By contrast, when �rm 1 wishes to induce �rm 2 to stay out of the market (i.e., it plays �D�),

it needs to set an appropriate limit price, i.e., set the highest p1 that still induces �rm 2 to stay out of

the market. In the next subsection we characterize these prices.

3.2 Computing the limit prices

To compute the limit prices, we invoke the �one-stage-deviation principle� (see e.g., Fudenberg and

Tirole, 1991). This principle states that in order to compute an MPE, it is su¢ cient to ensure that

the equilibrium is immune to deviations only in the current period. Hence, the limit prices that �rm

1 must choose when it plays D must leave �rm 2 indi¤erent between (i) staying out of the market as
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the equilibrium dictates, and (ii) deviating in the current period by operating in the market, but then

reverting to its equilibrium strategy in all future periods.7 For instance, the limit prices in regime DD

must leave �rm 2 indi¤erent between (i) staying out of the market and playing a one-stage deviation,

and (ii) operating in the market for only one period (recall that on the equilibrium path of regime DD,

�rm 2 is supposed to stay out of the market).

Let p�! be the limit price that �rm 1 charges in state ! 2 fI;Og under regime � 2 fAA;AD;DA;DDg

(in state M �rm 2 is not born, so �rm 1 does not need to set a limit price). On the equilibrium path,

there are 4 limit prices that �rm 1 charges: pDAI , pADO , pDDO , and pDDI . For example, pDAI is the limit

price that �rm 1 charges when it accommodates �rm 2�s entry, but then induces it to exit once it is in

the market (i.e., it plays D in state I and play A in state O). Apart from these 4 limit prices, we also

need to compute the limit prices that �rm 1 would need to charge if it were to deviate from playing

A to playing D. Although these limit prices are not actually used on the equilibrium path, they are

nonetheless needed in order to compute the pro�t that �rm 1 would make if it were to deviate from

A to D: There are 4 such �shadow� limit prices: pAAO , pAAI , pDAO , and pADI . For example, pAAO is the

�shadow�limit price that �rm 1 needs to charge in order to deter �rm 2�s entry into the market, given

that once it enters, it stays in the market forever.

The following lemma characterizes the 8 di¤erent limit prices.

Lemma 1: The limit prices that �rm 1 sets when it plays D in state ! are pDA! = pDD! = AC! and

pAD! = pAA! = p!, where

p! � AC! � �
�
�` �ACI
1� �

�
:

The limit prices are feasible however only when they are nonnegative, since �rm 2 can always stay in

the market without producing. Hence, �rm 1, however, can deter entry in regime AD by charging p!

only if

� � b� � ACO
ACO + (�` �ACI)

:

7Firm 1 can always break this indi¤erence by lowering the limit price slightly to ensure that �rm 2 strictly prefers to
stay out of the market. In what follows we will assume that when indi¤erent, �rm 2 stays out of the market.
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If this inequality fails, then there does not exist a su¢ ciently low limit price that can induce �rm 2 to

exit when it is just born under regime AD, so this regime cannot be an MPE. Likewise, �rm 1 cannot

induce �rm 2 to stay out of the market if it is just born under regime AA when � � b�. And if
� >

ACO
�`

;

then �rm 1 cannot induce �rm 2 to exit if it is already in the market under regimes AA or AD, where

by Assumption A3,ACO
�`

< b�. All limit prices are below �` - when �rm 1 charges a limit price it serves

the entire market.

Proof of Lemma 1: By de�nition, a limit price (either an actual or a shadow limit price), leaves

�rm 2 indi¤erent between staying in the market and staying out of the market. In the latter case, �rm

2 dies, so its pro�t is 0. If �rm 2 stays in the market in state ! under regime � and matches �rm

1�s price p�!, its current pro�t is s(p
�
! �AC!) and its future pro�t is �V �I (by the �one-stage-deviation

principle,��rm 2 reverts to its equilibrium strategy from the next period onward). Hence the limit

prices are de�ned by

0|{z}
Exiting

= s(p�! �AC!) + �V �I| {z }
Staying in the market

) p�! = AC! �
�V �I
s
. (8)

Note, however, that �rm 1 cannot always induce �rm 2 to exit the market, since �rm 2 does

not need to match p�! and can always stay in the market without producing. Hence, if p
�
! which solves

equation (8) is negative, then �sAC!+�V �I , which is �rm 2�s discounted payo¤ in state ! under regime

� if it does not produce in the current period, is strictly postive, so �rm 2 will prefer to stay in the

market. In that case, there does not exist a limit price that induces �rm 2 to stay out of the market.

We are now ready to characterize the limit prices that �rm 1 sets on the equilibrium path. In

regime DD, �rm 2 is supposed to stay out of the market in all periods, so V DDI = 0. The limit prices

are pDDO = ACO and pDDI = ACI ; these prices ensure that �rm 2 just breaks even if it operates in the

market for a single period.
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Likewise, in regime DA, �rm 1 predates an existing �rm 2 (i.e., plays D in state I), so V DAI = 0.

Therefore, once again the limit price is pDAI = ACI .

In regime AD, �rm 2 is accommodated if it is already IN the market, but is deterred when

it is just born (�rm 1 plays A in state I and D in state O). Hence if �rm 2 enters the market when

it is just born, it stays in the market forever. Recalling from Assumption 2 that the accommodation

price is �`, and noting that the average cost of �rm 2 when it is already in the market is ACI , the

discounted in�nite sum of future pro�ts that �rm 2 expects is V ADI = s(�`�ACI)
1�� , which is positive since

by Assumption 3, �` > ACO > ACI . Using equation (8), the limit price is given by

pADO = pO � ACO � �
�
�` �ACI
1� �

�
,

which is nonnegative provided that � � b�. When � � b� then, �rm 1 can deter �rm 2�s entry by shading

p1 below �rm 2�s average cost by an amount equal to the discounted in�nite sum of �rm 2�s per-unit

pro�ts following entry. Assumption 3 ensures that pO < ACO < �`. If however � > b�, �rm 2 can only

pro�tably enter the market when it is just born by staying in the market without producing.

We now turn to the shadow limit prices. We begin with pDAO , which is the limit price that

deters the entry of a newborn �rm 2, given that once it enters, �rm 1�s strategy is to induce it to exit.

Hence V DAI = 0, so by equation (8), pDAO = ACO.

Next, we consider pADI , which is the limit price that induces �rm 2 to exit if it is already IN the

market. If �rm 2 stays in the market despite the fact that �rm 1 charges pADI , it is then accommodated

forever (under regime AD an existing �rm 2 is accommodated), so as (4) shows, V ADI = s(�`�ACI)
1�� . By

equation (8) then,

pADI = pI � ACI � �
�
�` �ACI
1� �

�
.

Assumption 3 ensures that 0 < pADI < ACI < �
`. Clearly, pADI � 0 only if

� � ACI
�`

:
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If � > ACI
�`
, then �rm 1 cannot induce �rm 2 to exit if it is already IN, so regime AD is surely an MPE.

Finally, we consider pAAO and pAAI which are the limit prices that induce �rm 2 to stay out of

the market in regime AA. In this regime, �rm 2 is accommodated in all future periods if it stays in

the market, and hence, as (4) shows, V AAI = s(�`�ACI)
1�� . Using equation (8),

pAA! = p! � AC! � �
�
�` �ACI
1� �

�
, ! = I;O:

Since all limit prices are below �`, �rm 1 serves the entire market when it charges a limit price. Clealy,

pAAO � 0 if � � b� and pAAI � 0 if � � ACI
�`
. If theses inequalities fail, �rm 1 cannot deviate from its

equilbrium strategy in regime AA and deter �rm 2�s entry into the market or drive an existing �rm 2

to exit. �

Lemma 1 shows that in regimes DA or DD, in which an existing �rm 2 is deterred, the limit

prices are equal to the average cost of �rm 2 which is either ACI or ACO, depending on whether �rm 2

is �IN�or �OUT�of the market. Intuitively, in regimes DA or DD, �rm 2 can operate in the market

for at most one period; hence limit prices equal to �rm 2�s average cost ensure that �rm 2 cannot

make a positive pro�t by operating in the market. On the other hand, in regimes AD or AA, �rm 2 is

accommodated when it is �IN�the market, so �rm 1 needs to shade the limit price below the average

cost of �rm 2 by an amount equal to the discounted in�nite sum of the per-unit pro�ts that �rm 2 can

earn by staying in the market.

Lemma 1 also shows that in regimes AD and AA in which �rm 2 expects to stay in the market

forever if it managed to survive for at least one period, �rm 1 can induce �rm 2 to stay out of the

market only if �rm 2 is not too �patient.�Otherwise �rm 2 will agree to sustain the highest current

loss that �rm 1 can impose on it (ACI if it is already in the market and ACO if it just enters) in order

to reap o¤ the future accommodation pro�ts. In regimes DA and DD by contrast, �rm 2 expects to

stay in the market for at most one period and hence the limit prices are equal to its average costs.

In other words, predation and preemption are always feasible in regimes DA and DD but not under

regimes AD and AA.
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To ensure that charging a limit price is not a dominant strategy for �rm 1, we will impose the

following assumption which is stronger than Assumption 3:

Assumption 4: (1� s)�` > ACO

3.3 The conditions for an MPE

Having computed the limit prices, we are now ready to write the expected discounted payo¤ of �rm

1. Using equation (1) and Lemma 1, the discounted in�nite sum of �rm 1�s pro�ts in state ! under

regime � is given by

Y �! =

8>>>>>>>>><>>>>>>>>>:

Q�h + �
�

Y �O + (1� 
)Y �M

�
; ! =M;

ACI + �
�

Y �O + (1� 
)Y �M

�
; � = DD; DA and ! = I;

ACO + �
�

Y �O + (1� 
)Y �M

�
; � = DD and ! = O;

pO + �
�

Y �O + (1� 
)Y �M

�
; � = AD and ! = O;

(1� s)�` + �Y �I ; otherwise.

(9)

To understand this expression, note that in stateM , �rm 1 is a monopoly, and by Assumption 1 it sets

p1 = �h and sells Q units. In the next period, �rm 2 is born with probability 
 and the discounted

sum of �rm 1�s future pro�ts is Y �O; with probability 1� 
, �rm 2 is not born and the discounted sum

of �rm 1�s future pro�ts is Y �M . The second, third, and fourth lines in equation (9) correspond to cases

in which �rm 1 sets a limit price, p�!, in the current period and keeps �rm 2 out of the market. By

Lemma 1, �rm 1 serves the entire market in these cases. In the second line, the limit price is ACI , in

the third line it is ACO, and in the fourth line it is pO � ACO � �
�
�`�ACI
1��

�
. Since �rm 2 stays out of

the market, the discounted sum of �rm 1�s pro�ts from the next period onward is 
Y �O + (1� 
)Y �M ,

exactly as in the �rst line. The last line in (9) corresponds to 3 cases where �rm 2 is accommodated:

(i) � = AA, (ii) DA and ! = O, or (iii) � = AD and ! = I. By Assumption 2, �rm 1 prefers to set

p1 = �
` in these cases, so its current pro�t is (1� s)�`. Since �rm 2 is accommodated, the discounted

sum of �rm 1�s pro�ts from the next period onwards is Y �I .

We are now ready to specify the conditions under which each of the 4 possible regimes is an

13



MPE. As already mentioned, the �one-stage-deviation principle� implies that we only need to check

that each regime is immune to a deviation by �rm 1 in the current period, following which it reverts to

its equilibrium strategy. Since charging �h is a dominant strategy in stateM , we only need to consider

�rm 1�s strategy in states I and O: Note that a deviation by �rm 1 from D to A in state ! simply

implies that it changes its price from p�! to �
`. When �rm 1 deviates from A to D, it should charge an

appropriate �shadow�limit price (characterized by Lemma 1) instead of charging �`.

3.3.1 Regime AA

In regime AA, �rm 1 always accommodates �rm 2. On the equilibrium path then, �rm 2 operates in

the market forever. As a result, the discounted in�nite sum of �rm 1�s expected pro�ts under regime

AA is given by

Y AA! =

8<: Q�h + �
�

Y AAO + (1� 
)Y AAM

�
; ! =M;

(1� s)�` + �Y AAI ; ! = I;O:

Solving, we obtain

Y AAI = Y AAO =
(1� s)�`
1� � ;

and

Y AAM =
Q�h + �
Y AAO
1� � (1� 
) :

Regime AA is an MPE provided that �rm 1 does not wish to make a one-shot deviation from

A to D in either states I and O (but then revert to its equilibrium strategy and accommodate �rm 2

in all future periods). By Lemma 2, however, such deviations are not feasible if � > ACO
�`+ACO�ACI

, so

regime AA is surely an MPE. If � � ACI
�`
, there exist nonnegative limit prices that induce �rm 2 to

stay out of the market. By Lemma 1, the limit price in state ! = I; O is p! � AC! � �
�
�`�ACI
1��

�
and

at this price, �rm 1 serves the entire market. Hence, the discounted in�nite sum of �rm 1�s expected
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pro�ts when it deviates from A to D in state ! = I, O is

eY AA! = p!|{z}
Current pro�t

+ �
�

Y AAO + (1� 
)Y AAM

�| {z }
Future expected pro�t

=
� (1� 
)Q�h + (1� � (1� 
)) pO

1� � :

The continuation pro�ts in eY AA! re�ect the idea that if �rm 1 plays D in the current period, the state

next period is O with probability 
 andM with probability 1�
. The second line in eY AA! is a weighted

avegare of the discounted in�nite sum of �rm 1�s monopoly pro�ts Q�
h

1�� and its deterrence pro�ts
pO
1�� ,

where the weight on the former, � (1� 
), is equal to the discounted probability that �rm 1 will be a

monopoly once it drives �rm 2 out of the market. Notice that since Q�h > (1� s)�` > pO, deviation

from A to D involves a tradeo¤: in the deviation period, �rm 1�s pro�t drops from (1� s)�` to pO, but

in the following period, �rm 1 may enjoy a monopoly pro�t. Hence, whether a deviation is pro�table

on not depends crucially on the likelihood that �rm 1 becomes a monopoly once �rm 2 exits, 1 � 
,

and the discont factor, �.

Proposition 1: Regime AA is surely an MPE either if

� >
ACO

�` +ACO �ACI
; (10)

or if

Q�h �ACO � �` �ACI ; (11)

or when both (10) and (11) fail, if

� < �1 �
(1� s)�` �ACO�

Q�h �ACO
�
� (�` �ACI)

; (12)

where �1 > 0 when (11) fails. Otherwise, when (10), (11), and (12) fail, regime AA is an MPE
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provided that


 � 
1 �
�Q�h � (1� s)�` + (1� �) pO

�
�
Q�h � pO

� ; (13)

where pO � ACO � �
�
�`�ACI
1��

�
. The critical value 
1 is below 1 for all � 2 [0; 1] and is positive for

� > �1.

Proof of Proposition 1: Regime AA is an MPE provided that Y AAI � eY AAI and Y AAO � eY AAO .

Noting that Y AAO = Y AAI while eY AAO > eY AAI , it follows that Y AAO � eY AAO is su¢ cient to ensure that

regime AA is an MPE. By Lemma 2 though, deviation from A to D in state O is not feasible when

� > ACO
�`+ACO�ACI

, so regime AA is surely an MPE in this case. Otherwise, if � � ACO
�`+ACO�ACI

, then

using the de�nitions of Y AAO and eY AAO , the su¢ cient condition for MPE can be written as

(1� s)�` � � (1� 
)Q�h + (1� � (1� 
)) pO; (14)

or 
 � 
1, where 
1 is de�ned by (13). If 
1 < 0, then (14) holds for all 
 2 [0; 1]. To determine the

sign of 
1, note that the denominator of 
1 is positive, since Assumptions 1 and 2 and Lemma 1 imply

that Q�h > �` > pO. Hence the sign of 
1 depends on the sign of its numerator. Using the de�nition

of pO, the numerator of 
1 is

�Q�h � (1� s)�` + (1� �)
�
ACO � �

�
�` �ACI
1� �

��
= �

h�
Q�h �ACO

�
�
�
�` �ACI

�i
�
�
(1� s)�` �ACO

�
:

Since (1� s)�` � ACO > 0 by Assumption 4, this expression is negative, and hence 
1 < 0 if either

(i) Q�h � ACO � �` � ACI , or (ii) Q�h � ACO � �` � ACI (in which case �1 > 0) and � < �1. In

both cases, (13) is satis�ed for all 
 2 [0; 1]. If Q�h � ACO � �` � ACI and � > �1, then 
1 > 0.

Assumption 4 ensures that (1� s)�` > ACO > pO, so 
1 < 1 for all �. �

To interpret Proposition 1, note �rst that when � > ACO
�`+ACO�ACI

, �rm 1 cannot induce �rm 2

to exit the market since the discounted in�nite sum of future pro�ts that �rm 2 earns by staying in
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the market exceeds the maximial loss that �rm 1 can impose on �rm 2 in the current period (this loss

is AC!). Given that predation is not feasible, regime AA is obviously an MPE.

When � � ACO
�`+ACO�ACI

, predation is feasible, so AA is an MPE only if accommodation is more

pro�table for �rm 1 than predation. Deviation from A to D in state O lowers the current pro�t of

�rm 1 from (1� s)�` to pO (recall that pO < ACO < (1� s)�`), but on the other hand, it raises

the continuation pro�t of �rm 1 from �Y AAI to �
h

Y AAO + (1� 
) Q�

h+�
Y AAO
1��(1�
)

i
. The latter exceeds the

former since

�

�

Y AAO + (1� 
) Q�

h + �
Y AAO
1� � (1� 
)

�
= �Y AAO + � (1� 
)

�
Q�h + �
Y AAO
1� � (1� 
) � Y

AA
O

�
= �Y AAO + � (1� 
)

�
Q�h � (1� �)Y AAO
1� � (1� 
)

�
= �Y AAO + � (1� 
)

�
Q�h � (1� s)�`
1� � (1� 
)

�
> �Y AAI ;

where the inequality follows by noting that Y AAI = Y AAO and since the square brackete expression is

positive by Assumption 1. Hence, deviation from A to D entails a trade-o¤ between a loss of current

pro�t and a gain of future pro�ts. The loss exceeds the gain whenever (i) �` �ACI is large - the limit

price that �rm 1 needs to charge when deviating from A to D is low, (ii) � is low - �rm 1 cares more

about the current pro�t than future pro�ts, and (iii) 
 is large - �rm 1�s has only a small chance of

being a monopoly following �rm 2�s exit).

3.3.2 Regime DD

In regime DD �rm 1 induces �rm 2 to stay out of the market both when it is already in the market as

well as when it is just born. By Lemma 1, the required limit prices are ACI and ACO because under

regime DD, �rm 2 can operate in the market on the equilibrium path for at most one period, so a price

equal to its average cost ensures that it cannot make a pro�t. From �rm 1�s point of view, the bene�t

of the DD regime is that with probability 1� 
, a new �rm 2 is not born in the next period, so �rm 1

can earn a monopoly pro�t for at least one period.
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The discounted in�nite sum of �rm 1�s expected pro�ts under regime DD is given by

Y DD! =

8>>><>>>:
Q�h + �

�

Y DDO + (1� 
)Y DDM

�
; ! =M;

ACO + �
�

Y DDO + (1� 
)Y DDM

�
; ! = O;

ACI + �
�

Y DDO + (1� 
)Y DDM

�
; ! = I:

The continuation pro�ts in Y DD! re�ect the idea that even if �rm 2 is already in the market, on the

equilibrium path, it should exit, so from the next period onwards, �rm 1 is either a monopoly with

probability 1� 
, or faces a newborn �rm 2 with probability 
. Solving the system, we obtain

Y DD! = AC! +
�
�

ACO + (1� 
)Q�h

�
1� � ; ! = I;O;

and

Y DDM = Q�h +
�
�

ACO + (1� 
)Q�h

�
1� � :

Regime DD is an MPE provided that �rm 1 does not wish to make a one-shot deviation from

D to A in either states I and O. By Assumption 2, if �rm 1 deviates to A, it sets p1 = �` and its pro�t

in the current period increases from AC! to (1� s)�`. Since a one-shot deviation from D to A means

that next period the state is I, the discounted sum of �rm 1�s pro�ts in state ! = I;O becomes

eY DD! = (1� s)�`| {z }
Current pro�t

+ �Y DDI| {z };
Future expected pro�t

= (1� s)�` + �
 
ACI +

�
�

ACO + (1� 
)Q�h

�
1� �

!
:

Notice that since Y DDI < 
Y DDO + (1� 
)Y DDM , the continuation pro�t in eY DD! is lower than the

continuation pro�t in Y DD! . This implies that a deviation from D to A involves a tradeo¤ between an

increase in the current pro�t from AC! to (1� s)�` and a decrease in the future expected pro�ts from


Y DDO + (1� 
)Y DDM to Y DDI .
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Proposition 2: Regime DD is an MPE provided that


 � 
2 �
�Q�h � (1� s)�` + (1� �)ACI

�
�
Q�h �ACO

� ; (15)

where 
1 < 
2 < 1. The critical value 
2 is increasing and concave in � and is positive if and only if

� > �2 �
(1� s)�` �ACI
Q�h �ACI

: (16)

When � < �2 or when 
 > 
2, regime DD is not an MPE.

Proof of Proposition 2: To ensure that DD is an MPE, we need to �nd conditions that ensure that

Y DDI > eY DDI and Y DDO > eY DDO . Given that Y DDI < Y DDO and eY DDI = eY DDO , it is clear that if �rm

1 does not wish to deviate from D to A in state I, then it also does not wish to deviate in state O.

Hence, it is su¢ cient to �nd conditions that ensure that Y DDI � eY DDI . Using the de�nitions of Y DDI

and eY DDI , this inequality is equivalent to

� (1� 
)Q�h + �
ACO + (1� �)ACI � (1� s)�`; (17)

or 
 � 
2, where 
2 is de�ned by (15). It is easy to verify that since Q�h > ACO (Assumptions 1 and

3) and (1� s)�` > ACI (Assumption 4), then 
2 is increasing and concave in �. Moreover, using the

fact that Q�h > ACO > pO,


2 � 
1 =
z + (1� �)ACI
�
�
Q�h �ACO

� � z + (1� �) pO
�
�
Q�h � pO

�
=

z (ACO � pO) + (1� �)
�
Q�h (ACI � pO) + pO (ACO �ACI)

�
�
�
Q�h �ACO

� �
Q�h � pO

�
>

z (ACO � pO) + (1� �) [pO (ACI � pO) + pO (ACO �ACI)]
�
�
Q�h �ACO

� �
Q�h � pO

�
=

((1� �) pO + z) (ACO � pO)
�
�
Q�h �ACO

� �
Q�h � pO

� > 0;
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where z � �Q�h � (1� s)�`. In addition,


2 � �Q�h � (1� s)�` + (1� �)ACI
�
�
Q�h �ACO

�
<

�Q�h + (1� �)ACO � (1� s)�`

�
�
Q�h �ACO

� < 1;

where the last inequality follows by Assumption 4. Noting that the denominator of 
2 is positive, while

the numerator is increasing with �, negative at � = 0 and positive at � = 1, it follows that 
2 > 0 if

and only if � > �2, where �2 is de�ned by (16). When � < �2; 
2 < 0 and hence (15) fails. �

Intuitively, under regime DD, �rm 1 induces �rm 2 to stay out of the market by setting a limit

price of ACI when �rm 2 is already in the market and ACO when �rm 2 is just born. By Assumption

4, the resulting current pro�t of �rm 1 is below (1� s)�`, which is the pro�t that �rm 1 can earn by

accommodating �rm 2. The sacri�ce of current pro�t is pro�table for �rm 1 only if the discounted

in�nite sum of its future pro�ts is su¢ ciently large. Not surprisingly, this is the case when �rm 1

is su¢ ciently �patient� (� is large) and if there is a su¢ ciently high probability that it will enjoy a

monopoly position next period (
 is su¢ ciently small). In other words, regime DD is an MPE only

when � is relatively large and 
 is relatvely small.

3.3.3 Regime DA

In regime DA, �rm 1 induces �rm 2 to exit when �rm 2 is already in the market, but then it accom-

modates the entry of a newborn �rm 2. On the equilibrium path then, a newborn �rm 2 enters the

market for only one period. By Lemma 1, the limit price that �rm 1 charges when �rm 2 is already

in the market is ACI (�rm 2 expects to exit after one period, so a limit price of ACI ensures that

it cannot make a pro�t by staying). Hence, the discounted in�nite in�nite sum of �rm 1�s expected
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pro�ts under regime DA is given by

Y DA! =

8>>><>>>:
Q�h + �

�

Y DAO + (1� 
)Y DAM

�
; ! =M;

(1� s)�` + �Y DAI ; ! = O;

ACI + �
�

Y DAO + (1� 
)Y DAM

�
; ! = I:

Solving, we obtain

Y DAI =
�
 (1� s)�` + � (1� 
)Q�h + (1� � (1� 
))ACI

(1� �) (1 + �
) ;

Y DAO = (1� s)�` + �Y DAI ;

and

Y DAM = Q�h �ACI + Y DAI :

Regime DA is an MPE provided that �rm 1 does not wish to make a one-shot deviation from

A to D in state O and from D to A in state I. By Lemma 1, the limit price necessary to induce �rm

2 to stay out in state O is equal to ACO (recall that in regime DA �rm 2 is deterred once it is in the

market). Given this limit price, and noting that once �rm 1 plays D in the current period, the state

next period is either O with probability 
 or M with probability 1� 
, the discounted in�nite sum of

�rm 1�s pro�ts if it deviates from A to D in state O is

eY DAO = ACO| {z }
Current pro�t

+ �
�

Y DAO + (1� 
)Y DAM

�| {z }
Future expected pro�t

:

If �rm 1 deviates in state I from D to A, then by Assumption 2, it sets p1 = �` in the current

period and makes a current pro�t of (1� s)�`. Following the deviation, the state next period is I.

Hence, the discounted in�nite sum of �rm 1�s expected pro�ts if it deviates from D to A in state I is

eY DAI = (1� s)�`| {z }
Current pro�t

+ �Y DAI| {z } :
Future expected pro�t
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Given the payo¤s of �rm 1 on the equilibrium path and following deviations, regime DA is an

MPE provided that Y DAO � eY DAO and Y DAI � eY DAI . In the next proposition, we prove however that

the two inequalities cannot hold simultaneously.

Proposition 3: Regime DA cannot be an MPE.

Proof of Proposition 3: Using the de�nitions of Y DAO , Y DAI , and Y DAM , condition Y DAO � eY DAO is

equivalent to

(1� s)�` � � (1� 
)Q�h + (1 + �
)ACO � �ACI : (18)

Using the de�nition of Y DAI , condition Y DAI � eY DAI is equivalent to

� (1� 
)Q�h + (1 + �
)ACI � �ACI � (1� s)�`: (19)

Since ACO > ACI , conditions (18) and (19) cannot hold simultaneously. �

Proposition 3 shows that it is never optimal for �rm 1 to accommodate a newborn �rm 2 for a

single period and then induce it to exit. To understand the intuition, note that in order to induce �rm

2 to exit, �rm 1 needs to charge a limit price of ACI : This action lowers the current pro�t of �rm 1 from

(1� s)�` to ACI , but has the advantage of allowing �rm 1 to enjoy a monopoly position next period

with probability 1 � 
. But if the expected gain from monopoly position exceeds the loss of current

pro�t, then it should also be pro�table for �rm 1 to deter entry when �rm 2 is just born: the required

limit price in that case exceeds the limit price when �rm 2 is already in the market (ACO rather than

ACI) , while the expected gain from being a monopoly in the next period is equal to �`�ACI
1�� in both

cases. Hence, if it pays �rm 1 to induce �rm 2 to exit, then it should also pay it to deter �rm 2�s entry

into the market in the �rst place. As a result, DA cannot be an MPE.

3.3.4 Regime AD

In regime AD, �rm 1 accommodates an existing �rm 2 but deters the entry of a newborn �rm 2. Since

the game begin with �rm 2 being in the market, on the equilibrium path, �rm 2 will stay in the market
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forever. By Lemma 1, the limit price that �rm 1 needs to set in order to deter the entry of a newborn

�rm 2 is pO � ACO � �
�
�`�ACI
1��

�
. Lemma 2 shows however that this limit price is feasible only when

� � ACO
�`+ACO�ACI

; when � > ACO
�`+ACO�ACI

, �rm 1 cannot deter the entry of a newborn �rm 2 since the

discounted in�nite sum of future pro�ts that �rm 2 expects when it enters the market exceed the loss

it incurs in the period it enters; hence, regime AD is not feasible.

The discounted in�nite sum of �rm 1�s pro�ts under regime AD when it is feasible is given by

Y AD! =

8>>><>>>:
Q�h + �

�

Y ADO + (1� 
)Y ADM

�
; ! =M;

pO + �
�

Y ADO + (1� 
)Y ADM

�
; ! = O;

(1� s)�` + �Y ADI ; ! = I:

Solving, we obtain

Y ADI =
(1� s)�`
1� � ;

Y ADO =
� (1� 
)Q�h + (1� � (1� 
)) pO

1� � ;

and

Y ADM =
(1� �
)Q�h + �
pO

1� � ;

Note that Y ADI = (1�s)�`
1�� because under regime AD, �rm 1 accommodates �rm 2 if it is already in the

market, so �rm 1�s payo¤ in state I is simply equal to the discounted in�nite sum of its accommodation

pro�ts. On the other hand, Y ADO is a weighted average of the discounted in�nite sum of monopoly pro�ts
Q�h

1�� and the deterrence pro�ts
pO
1�� . The weight on the former, � (1� 
), is equal to the discounted

probability that �rm 1 will be a monopoly next period.

If �rm 1 makes a one-shot deviation from D to A in state O, it charges �` and earns (1� s)�`

in the current period. Once it is in the market, �rm 2 stays in the market forever, so the discounted

in�nite sum of �rm 1�s pro�ts under such deviation is

eY ADO = (1� s)�`| {z }
Current pro�t

+ �Y ADI| {z }
Future expected pro�t

=
(1� s)�`
1� � :
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This expression is equal to Y ADI because in both cases �rm 2 is accommodated forever.

Next, consider a one-shot deviation by �rm 1 from A to D in state I. By Lemma 1, �rm 1

charges in this case a limit price of pI � ACI � �
�
�`�ACI
1��

�
, which is equal to the average cost of �rm

2 given that it is already in the market, minus the discounted in�nite sum of its future per-unit pro�ts

from operating in the market. The latter is needed because if �rm 2 does not exit, it is accommodated

forever and earns �` �ACI per unit in every period. The limit price pI is feasible however only when

� � ACI
�`
; otherwise there is no nonnegative price that can induce �rm 2 to exit the market and hence

deviation from A to D is not feasible. The discounted sum of �rm 1�s pro�ts when it deviates from A

to D in state I is therefore

eY ADI = pI|{z}
Current pro�t

+ �
�

Y ADO + (1� 
)Y ADM

�| {z }
Future expected pro�t

=
� (1� 
)Q�h + �
pO + (1� �) pI

1� � :

The last line in eY ADI is a weighted average of the discounted in�nite sum of �rm 1�s monopoly pro�t
Q�h

1�� , its deterrence pro�t
pO
1�� , and its predation pro�t

pI
1�� .

Regime AD is an MPE provided that Y ADO � eY ADO and Y ADI � eY ADI . The next proposition

characterizes the conditions under which the two inequalities hold.

Proposition 4: Regime AD is not an MPE if either (10) or (11) hold, or (iii) both (10) and (11) fail

but � < �1, where �1 is de�ned by (12). Otherwise, when

ACO
�`

� � < ACO
�` +ACO �ACI

;

regime AD is an MPE provided that 
 � 
1; where 
1 is de�ned by (13) and is positive since (11) fails

and � > �1. Finally, when � <
ACO
�`
, regime AD is an MPE if 
0 � 
 � 
1, where


0 �
�Q�h � (1� s)�` + (1� �) pI

�
�
Q�h � pO

� ; (20)
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with pI � ACI � �
�
�`�ACI
1��

�
. The critical value 
0 is below 
1 and is positive if and only if

� � �0 �
(1� s)�` �ACI

Q�h � �`
: (21)

Proof of Proposition 4: By Lemma 2, regime AD cannot be an MPE if � � ACO
�`+ACO�ACI

because

then, there does not existpO � 0 that enables �rm 1 to deter the entry of a newborn �rm 2. If
ACO
�`

� � < ACO
�`+ACO�ACI

, there exists pO � 0 that deters the entry of a newborn �rm 2, but there does

not exist pI � 0 that induces an existing �rm 2 to exit. Hence, deviation from A to D is not feasible in

state I, so to ensure that AD is an MPE, we only need to ensure that �rm 1 does not wish to deviate

from D to A in state O, i.e., Y ADO � eY ADO . Using the de�nitions of Y ADO and eY DADO , this inequality

can be written as

� (1� 
)Q�h + (1� � (1� 
)) pO � (1� s)�`; (22)

or 
 � 
1, where 
1 is de�ned by (13). From Proposition 1, however, we know that 
1 < 0 if either

(i) Q�h � ACO � �` � ACI , or (ii) Q�h � ACO � �` � ACI and � < �1. In both cases, (22) cannot

hold, so AD cannot be an MPE. If Q�h �ACO � �` �ACI and � > �1, then 
1 > 0 and hence (22) is

satis�ed for small enough values of 
.

Finally, when � < ACO
�`
, both pO and pI are feasible, so we also need to ensure that �rm 1 does

not wish to deviate from A to D in state I, i.e., Y ADI � eY ADI . Using the de�nitions of Y ADI and eY ADI ,

this inequality can be written as

(1� s)�` � � (1� 
)Q�h + (1� � (1� 
)) pO � (1� �) (pO � pI) ; (23)

or 
 � 
0, where 
0 is de�ned by (20). Notice that since pO > pI , then 
0 < 
1: Moreover, since

Assumptions 1 and 2 and Lemma 1 imply that Q�h > �` > pO, the sign of 
0 depends on the sign of
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its numerator, which using the de�nition of pI , is given by

�Q�h � (1� s)�` + (1� �)
�
ACI � �

�` �ACI
1� �

�
= �

�
Q�h � �`

�
�
�
(1� s)�` �ACI

�
=

�
Q�h � �`

�
(� � �0) ;

where �0 is de�ned by (12). It is now easy to see that 
0 R 0 as � R �0. �

Proposition 4 shows that regime AD can be an MPE only when � < ACO
�`+ACO�ACI

, otherwise

�rm 1 cannot deter the entry of a newborn �rm 2 into the market because the discounted in�nite sum

of future pro�ts that �rm 2 expects when it enters exceeds any loss that �rm 2 bears in the period in

which it enters.

When � is intermediate, �rm 1 can deter entry in state O but cannot deviate from A to D in

state I since the maximal loss that �rm 2 can bear is smaller than its discounted in�nite sum of future

pro�ts when it stays in the market (in regime AD, �rm 2 is accommodated if it stays in the market

since the deviation from A to D is for only one period). Hence regime AD is an MPE if �rm 1 does

not wish to deviate from D to A in state O. The condition that ensures that this is the case is 
 � 
1;

this condition is the opposite of the condition that ensures that regime AA is an MPE, since there we

had to ensure that �rm 1 does not wish to deviate from A to D in state O, taking into account the fact

that, as in regime AD, �rm 2 stays in the market forever if it is accommodated. Intuitively, regime

AD is an MPE only when 
 is relatively small since then �rm 1 is very likely to remain a monopoly

once �rm 2 exits and hence D is particularly attractive. However when Q�h � ACO � �` � ACI or

when Q�h�ACO � �`�ACI and � < �1, D is not pro�table for �rm 1 no matter how small 
 is. The

reason is that when Q�h � ACO � �` � ACI the limit price required to deter entry is very low and

when � < �1 the discounted in�nite sum of future monopoly pro�ts that �rm 1 earns once it deters

entry is not su¢ ciently large to justify the sacri�ce of current pro�t associated with charging a limit

price. Hence, regime AD can be an MPE when � is intermediate only if (i) Q�h � ACO � �` � ACI
and (ii) � > �1 and (iii) 
 � 
1.
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Finally, when � is small, regime AD can be an MPE provided that (i) Q�h�ACO � �`�ACI
and (ii) � > �1 and (iii) 
0 � 
 � 
1. The requirement that 
 � 
0 is needed to ensure that �rm 1

does not wish to deviate from A to D in state I (D is not very attractive when 
 is high since then

�rm 1 is high likely to face a newborn �rm 2 once the current �rm 2 exits the market).

It should be noted that when � � ACO
�`

or � < �1, AA and AD cannot be both MPE: the

conditions that ensure that AA is an MPE ensure that AD is not an MPE and vice versa. Only when
ACO
�`

� � < ACO
�`+ACO�ACI

can AA and AD be both MPE.

3.4 Comparing the di¤erent equilibrium regimes

Having characterized the conditions for the various equilibrium regimes, we now establish the following

results. First, combined, Propositions 2 and 3 imply the following:

Corollary 1: Predation is an equilibrium behavior in our model only if it is accompanied by the preda-

tor�s committment to also deter all future entry. Short-term predation accompanied by accommodation

of future entry is never an MPE.

Second, we now examine how the conditions for predation to be arise in equilibrium are a¤ected

by the various exogenous parameters of the model. We will say that predation is facilitated when 
2

increases (the set of values of � and 
 for which regime DD is an MPE becomes wider) and hindered

when 
2 decreases.

Corollary 2: Predation is facilitated when �rm 2 has a larger capacity ( s increases) and has higher

average costs (ACI and ACO increase) and when the monopoly pro�t of �rm 1 are higher (Q�h

increases), but is hindered when the accommodation price is higher (�` increase).

Proof of Corollary 2: It is easy to see from (15) that 
2 is increasing with s; ACI , and ACO, but

decreasing with �`. Di¤erentiating 
2 with respect to Q�
h reveals that

@
2
@Q�h

� (1� s)�` � (1� �)ACI �ACO
�
�
Q�h �ACO

�2 > 0;
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where the inequality follows by Assumption 4. �

Intuitively, increases in ACI and ACO allow �rm 1 to induce �rm 2 to stay out of the market

at higher limit prices and hence lower the cost of regime DD from �rm 1�s point of view. An increase

in �rm 1�s monopoly pro�t, Q�h, makes predation more pro�table, since the bene�t of predation in

our model comes from the fact that �rm 1 can become a monopoly if a new �rm 2 is not born. Finally,

either an increase in �rm 2�s capacity or in the accommodation price �` raise the accommodation pro�t

of �rm 1 and hence make predation relatively less attractive.

Next we examine the pro�tability of the various equilibrum con�guations:

Proposition 5: Regime DD is more pro�table for �rm 1 than regimes AA and AD.

Proof of Proposition 5: Under regimes AA and AD, �rm 2 is accommodated forever, so its equi-

librium payo¤ is

Y AAI = Y ADI =
(1� s)�`
1� � :

Under regime DD, �rm 2 is deterred forever, so its equilibrium payo¤ is

Y DDO = ACI +
�
�

ACO + (1� 
)Q�h

�
1� � :

Noting that Y DDO is decreasing with 
 and recalling that DD is an equilibrium if 
 � 
2, it follows that

Y DDO � ACI +
�
�

2ACO + (1� 
2)Q�h

�
1� � =

(1� s)�`
1� � ;

where the last equality follows from the de�nition of 
2 (see condition (17) above). �

[It should be noted that for DD to be an MPE, deterrence must be more pro�table than

accommodation in both states I (�rm 2 is already in the market) and O (�rm 2 is just born). As a

result, the conditions that ensure that regime DD is an MPE also ensure that DD is more pro�table

for �rm 1 than regime AA. Formally, the left-hand side of (17) is equal to Y DDI (�rm 1�s equilibrium

payo¤ under regime DD), while the right-hand side is lower than Y AAO (�rm 1�s equilibrium payo¤
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under regime AA). Hence, (17) implies Y DDI > Y AAO . In sum, when DD is an MPE, it yields �rm 1

higher pro�ts than AA.]

4 Welfare implications

In this section we explore the welfare consequences of predation. As is well known, predatory behavior

involves a tradeo¤ from consumers�point of view: in the short-run, predatory behavior allow consumes

to enjoy low predatory prices. In the long-run however, the prey exits the market and the dominant

�rm raises prices, potentially to the monopoly level. in our model though, the tradeo¤ is more involved

since �rm 1 potentially faces new entrants after �rm 2 exits and hence it may have to charge low limit

prices even in the future. To explore the welfare implications of predatory behavior in the context of

our dynamic model, note that when �rm 1 acts as a monopoly, it sets a price �h and hence there is no

consumer surplus. On the other hand, under accommodation, the price is �` and consumer surplus is

SA � Q
�
�h � �`

�
:

And, when �rm 1 charges a limit price p!, consumer surplus is

S! � SA + �` � p!:

Given that regime DA is never an MPE in our model we will focus only on regimes AA, DD,

and AD. Using the above expressions, the discounted in�nite sum of consumer surplus in state ! under

regime � = AA;DD;AD is given by:

CS�! =

8>>>>>><>>>>>>:

0 + �
�

CS�O + (1� 
)CS�M

�
; ! =M;

S! + �
�

CS�O + (1� 
)CS�M

�
; � = DD;

SO + �
�

CS�O + (1� 
)CS�M

�
; � = AD and ! = O;

SA + �CS
�
I ; � = AA or � = AD and ! = I.

(24)
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To understand this expression, note that in state M , �rm 1 sets p1 = �h and there is no consumer

surplus in the current period. In the next period, the discounted sum of consumer surplus is CS�O with

probability 
 (a new �rm 2 is born) and CS�M with probability 1 � 
 (a new �rm 2 is not born). In

regime DD and in state O in regime AD, �rm 2 is induced to stay out of the market and hence the

continuation value of consumer surplus are as in state M . The current value of consuer surplus re�ects

the fact that �rm 1 charges a limit price in the current period. The last line in (24) corresponds to

cases where �rm 2 is accommodated; the current value of consumer surplus is SA while the continuation

value is CS�I .

Solving, we obtain the following values of consumer surplus:

State

Regime
M O I

AA �
SA
(1��)(1��(1�
))

SA
1��

SA
1��

DD �
SO
1��

(1��(1�
))SO
1�� SI +

�
SO
1��

AD �
SO
1��

(1��(1�
))SO
1��

SA
1��

Using the expressions in the table, we can now report the following result:

Proposition 6: Predation in regime DD improves the welfare of consumers relative to regimes AA

and AD in which, on the equilibrium path, �rm 2 is accommodated forever, when � � �`�ACI
SA

. When

� > �`�ACI
SA

, predation can still imporve the welfare of consumers relative to regime AA if


 > 
 �
(1� �)

�
�SA �

�
�` �ACI

��
� [(1� �)SA + �` � �ACI + (1� �)ACO]

: (25)

Proof of Proposition 6: Under regimes DD, the limit price in state I is p! = AC!. Using the
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expressions in the table,

�(
) � CSDDI � CSAAI

= SI +
�
SO
1� � �

SA
1� �

=
(1� �)

�
�` �ACI

�
+ �


�
�` �ACO

�
� � (1� 
)SA

1� � ;

where �(
) is increasing with 
. Note that

�(1) =
(1� �)

�
�` �ACI

�
+ �

�
�` �ACO

�
(1� �)2

> 0:

Hence, �(1) > 0 for su¢ ciently large values of 
. Also note that

�(0) =
(1� �)

�
�` �ACI

�
� �SA

1� � :

If � � �`�ACI
�`�ACI+SA

, then �(0) � 0 so �(
) � 0 for all 
 in which case, predation actually bene�ts

consumers. Otherwise, if � > �`�ACI
�`�ACI+SA

, then �(
) > 0 only if 
 > 
, where 
 2 (0; 1) is de�ned by

(25). �

Intuitively, predation involves a tradeo¤ from the consumers� point of view: in the current

period it is bene�cial as it involves low limit prices, but in the long-run it may be harmful as it may

lead to high monopoly prices. Proposition 6 shows that when � is small (consumers are �impatient�

and care more about their short-term surplus), then predation bene�ts consumes. The proposition also

shows that predation bene�ts consumers when the likelihood that a new �rm 2 will be born, 
, is high.

The reason of course is that whenever a new �rm 2 is born, �rm 1 charges a low limit price to deter it

entry. This low limit price bene�ts consumers.

31



5 References

Areeda P. and P. Turner (1974), �Predatory Pricing and Related Practices under Section 2 of the

Sherman Act,�Harvard Law Review, 88, 697-733.

Benoit J-F. (1984), �Financially Constrained Entry in a Game with Incomplete Information,� The

RAND Journal of Economics, 15(4), 490-499.

Besanko D,. U. Doraszelski, and Y. Kryukov (2011), �The Economics of Predation: What Drives

Pricing when there is Learning-by-Doing?�CEPR Discussion Paper No. 8708.

Bolton P. (2000), Review of Lott, J.(1999), Are Predatory Commitments Credible? Who should the

Courts Believe?, in: Journal of Economic Literature, 38, 974-975.

Bolton P., J. Brodley and M. Riordan (2000), �Predatory Pricing: Strategic Theory and Legal Policy,�

The Georgetown Law Journal, 88, 2239-2330.

Bolton P. and D. Scharfstein (1990), �A Theory of Predation Based on Agency Problems in Financial

Contracting,�The American Economic Review, 80, 93-106.

Bork R. (1978), Antirust Paradox A Policy at war with itself, New York: Free Press.

Easterbrook F. (1981), �Predatory Strategies and Counterstrategies,�University of Chicago Law Re-

view, 48(2), 263-337.

Edlin A. (2010), �Predatory Pricing,� Research Handbook on Economics of Antitrust. Ed. Einer

Elhauge. Edward Elgar. Available at: http://works.bepress.com/aaron_edlin/74

Elzinga K. and D. Mills (1989), �Testing for Predation: Is Recoupment Feasible?�The Antitrust Bul-

letin, Winter, 869-893.

Elzinga K. and D. Mills (2001), �Predatory Pricing and Strategic Theory,�Georgetown Law Journal,

89, 2475-2494

32



Fudenberg D. and J. Tirole (1985), �Predation without Reputation,�MIT, mimeo

Fudenberg D. and J. Tirole (1986), �A �Signal-Jamming�Theory of Predation,�RAND Journal of

Economics, 17, 366-376.

Fudenberg D. and J. Tirole (1991), Game Theory, MIT Press.

Lott J. and T. Opler (1999), �Testing Whether Predatory Commitments are Credible,� Journal of

Business, 69(3), 339-382.

Lott J. (1999), Are Predatory Commitments Credible? Who Should the Courts Believe? University of

Chicago Press.

McGee J. (1958), �Predatory Price Cutting: The Standard Oil (NJ) Case,�Journal of Law and Eco-

nomics, 1, 137-169

McGee J. (1980), �Predatory Pricing Revisited,�Journal of Law and Economics, 23(2), 289-330.

Milgrom P. and J. Roberts (1982a), �Predation, Reputation, and Entry Deterrence,�Journal of Eco-

nomic Theory, 27, 280-312

Milgrom P. and J. Roberts (1982b), �Limit Pricing and Entry under Incomplete Information: An

Equilibrium Analysis,�Econometrica, 50, 443-459.

Ordover J. and G. Saloner (1989), �Predation, Monopolization, and Antitrust,�in Handbook of Indus-

trial Organization, Vol. 1, Amsterdam, Elsevier, 538-596.

Scharfstein D, (1984), �A Policy to Prevent Rational Test-Market Predation, The RAND Journal of

Economics, 15(2), 229-243.

Scherer F.M. and D. Ross (1990), Industrial Market Structure and Economic Performance, 3rd ed.

Boston: Houghton Mi­ in

33


