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Abstract
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1 Introduction

Modern communication networks allow users to easily establish a large number of links,

both on the same network and across networks. Still, most users’contacts are often limited

to only a small fraction of all other users. Exchanges tend to be with friends and family or

between people who have, for different reasons, close social links, such as members of user

groups linked to business customers. While each user thus calls only a small fraction of

all other users at all, the subset of links with whom he has also frequent communications

may be even smaller. For instance, Shi et al. (2010) find, for a Chinese cellular network,

that people make most of their calls (“80%”) to a very small proportion (“20%”) of their

contacts.

These observations seem to contrast with a standard assumption that is frequently

made in the literature on competition between telecommunications networks: the assump-

tion of “uniform calling patterns”, whereby each subscriber is assumed to be equally likely

to call any other subscriber in the market (e.g., Armstrong, 1998; Laffont et al., 1998a,

1998b). As calls between networks (called “off-net calls”) involve the payments of wholesale

charges (also called access charges, or termination rates, in the literature), the assumption

of uniform calling patterns has consequences on how access charges impact on consumers’

retail expenses. When competing networks can set access charges strategically, Gans and

King (2001) find that access charges are jointly set below cost. Under multi-part tariffs,

this leads to higher prices for on-net than for off-net calls. Together with the assumption

of uniform calling patterns, this implies that the fraction of call minutes that a subscriber

makes on-net should be below the market share of the network to which he subscribes.

Instead, Birke and Swann (2006) document that calling patterns are heavily on-net

biased, and that consumers tend to choose telecom providers following their calling clubs.

In the UK, a recent report by Ofcom (2011) shows that there are no longer significant

differences between on-net and off-net prices, albeit the share of on-net calls among all

mobile calls is still significantly higher than what a uniform calling pattern would predict.

In this paper we address this evidence by introducing non-uniform calling patterns in a

tractable model of network competition.1 Customers differ in their preferences for a par-

1In Italy, the subscriber market shares and the share of on-net calls compare as follows (on-net shares
in brackets): TIM 36% (70%), Vodafone 34% (78%), Wind 20% (70%), and H3G 10% (33%). A similar
picture emerges in Portugal: Over the years 2003-2009, the share of on-net calls in all national mobile-
to-mobile calls has been fairly constant at 75%, while under a uniform calling pattern this share should
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ticular network, and instead of stipulating that each subscriber calls any other subscriber

with the same probability, we suppose that he is more likely to call other subscribers with

similar preferences than those further away in preference space. For instance, the brand

positioning of a network may be more appealing to a particular age group.2 Likewise,

differences in local network coverage could generate similar patterns of call preferences. In

both cases, preferences for a particular provider are positively correlated with the proba-

bility of making calls to other people with similar preferences (e.g., youths tend to have

more friends of the same age in the first case, and people interact more with neighbors in

the second case). We analyze how non-uniform calling patterns, with the resulting high

fraction of on-net calls, affect equilibrium outcomes.

When calling patterns are uniform, economic theory predicts that under multi-part tar-

iffs variable prices for calls should be set equal to (perceived) marginal costs. Instead, with

non-uniform calling patterns, we find that networks optimally deviate from such marginal-

cost pricing in order to price discriminate. We derive a simple general pricing formula.

The latter relates the deviation from marginal-cost pricing to the difference between the

calling pattern of a network’s “marginal subscriber”, who is just indifferent between join-

ing this and a competitor’s network, and the average calling pattern of subscribers on this

network.

An important implication of our results concerns networks’choice of profit-maximizing

access charges. Under a uniform calling pattern, networks would choose access charges

below cost to dampen competition (Gans and King, 2001). This induces off-net prices

below on-net prices, leading to negative “tariff-mediated network effects”(Laffont et al.,

1998b): The average call price on a smaller network will be lower due to the larger share

of off-net calls. Consumers then prefer to join a smaller rather than a larger network,

which dampens competition. However, when calling patterns are no longer uniform, the

proportion of on- and off-net calls of the marginal subscriber is less closely tied to the

respective market shares of the two networks. This diminishes the role of the aforemen-

have been at most 40%. In both instances, the on-net share is thus much larger than market shares alone
would suggest, though the fact that there on-net calls are typically substantially cheaper does not allow
to draw immediate inferences on whether these call imbalances are only tariff-induced or also due to what
we term “calling circles”.

2This seems to be the case, for instance, in the UK for customers of Virgin Mo-
bile, who are typically young people attracted by the brand of the Virgin group. See
http://www.ofcom.org.uk/research/cm/cmr09/. Also, when mobile operators sponsor different sport ac-
tivities or clubs, subscribers may sort according to their respective preferences over sports or clubs.
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tioned tariff-mediated network effects. We derive conditions for when, with non-uniform

calling patterns, competition is dampened through higher and not lower access charges.

Our finding that access charges above cost can be used to dampen competition provides

a rationale for policy invention aimed at reducing access charges. There is no scope for

such policy intervention in the standard model with uniform calling patterns. That access

charges above cost can dampen competition is related to, but conceptually different from,

the standard logic of “raising rivals’cost”. When, in a standard oligopoly model without

network competition, firms cross-licence an essential input to each other, a higher marginal

royalty unambiguously increases both a firm’s own true cost and its opportunity cost of

serving more customers. As acquiring the marginal customer thus becomes less attractive,

this reduces the intensity of competition. To see the difference to the case of network

competition, note that when off-net and on-net prices are the same, a change in access

charges would not affect competition, as it would not change the profits that firms can

make with the marginal subscriber: When calls between networks are balanced, for both

networks the higher charges for off-net calls are exactly off-set by the higher revenues from

received calls.3 We show how the endogenous price difference between on-net and off-net

prices, together with the degree of concentration of calling patterns, determine when lower

or higher access charges dampen competition.

We contribute to the literature that analyzes how network effects affect the inten-

sity of competition (e.g., Katz and Shapiro, 1985). Applied to communication networks,

Gabrielsen and Vagstad (2008) and Calzada and Valletti (2008) introduce the notion of

“calling clubs”to account for the fact that subscribers tend to call only a limited number

of people, and analyze how these clubs deter subscribers from switching between networks.

However, they assume that clubs only consist of subscribers with identical preferences, so

that two “calling clubs” are always completely disjunct from each other. In our model

clubs overlap, which seems more realistic.

Dessein (2003, 2004) and Armstrong (2004) allow for heterogeneity between high- and

low-volume consumers and study the effects of net call inflows or outflows of specific

consumer groups. Armstrong assumes inelastic call demand, so that call imbalances are

3This does no longer hold, however, when tariffs are restricted to be linear. Starting from a symmetric
equilibrium, a deviating firm could only acquire market share through undercutting the marginal price,
which would lead to an imbalance of calls: All of its customers would make more off-net calls than they
receive. Higher access charges then dampen competition through this (out—of-equilibrium) imbalance (cf.
Armstrong, 1998 and Laffont et al., 1998a).
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translated into different “waterbed effects”in fixed payments. In Dessein’s framework there

is scope for marginal prices to differ from perceived marginal costs if either termination

charges are far from cost or according to the heterogeneity between the two customer

groups. In our model, we find that call prices are always distorted away from marginal

cost if the calling pattern is not uniform, contrary to Dessein (2004). Since we consider a

different type of heterogeneity, our work is complementary to Dessein’s in this respect.

Our model of calling patterns may be useful also for wider applications in the area of

network economics (cf. Farrell and Klemperer, 2007). We combine exogenous call prefer-

ences for particular consumers with network externalities that are induced by endogenously

set tariffs. The latter feature distinguishes our paper from other recent contributions on

network externalities, such as Fjeldstad et al. (2010). Prices in our model depend on

reciprocal access charges. Here, our analysis contributes to a large literature, starting with

Armstrong (1998) and Laffont et al. (1998a, 1998b), on how networks gain from choosing

(unregulated) reciprocal access charges. As we noted above, an important puzzle is the

prediction of Gans and King (2001) that with two-part tariffs and discrimination between

on- and off-net calls networks would jointly choose access charges below cost, which seems

to be at odds with how networks set access charges in reality. Still within the constraints

of uniform calling patterns, Lopez and Rey (2009) show that high access charges make

foreclosure possible, Jullien et al. (2010) show how high access charges can arise from

price discrimination between heavy and light users,4 and in Armstrong and Wright (2009)

they may arise under the simultaneous interconnection of mobile and fixed networks. As

noted previously, in our model we also obtain for non-uniform calling patterns that off-net

prices may, in equilibrium, be indeed higher than on-net prices.5

The rest of this paper is organized as follows. Section 2 introduces the model and

the necessary notions related to calling patterns. In Section 3 we determine the on- and

off-net pricing structure. Section 4 determines the market equilibrium. In Section 5

networks choose reciprocal access charges. Section 6 discusses the scope for various policy

interventions, such as imposing restrictions on access charges or on price discrimination

between on-net and off-net calls. Section 7 offers some concluding remarks.

4See, however, Hurkens and Jeon (2009), who find below-cost access charges in a model with elastic
subscription demand.

5In the extant literature, when subscribers receive utility also from received calls, such a pricing struc-
ture is obtained by Jeon et al. (2004), but disappears once access charges are endogenized (Cambini and
Valletti, 2008). See also Hermalin and Katz (2011).
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2 AModel of Competition with Non-Uniform Calling
Patterns

We consider competition between two interconnected telephone networks, 1 and 2, indexed

by i 6= j ∈ {1, 2}. Both networks incur a fixed cost f to serve each subscriber. The
marginal cost of providing a minute of a telephone call is c ≡ cO + cT , where cO and

cT denote the costs borne by the originating and terminating network, respectively. As

a result, the total marginal cost of an on-net call initiated and terminated on the same

network is c. Networks pay each other a reciprocal access charge (or termination rate) a

when a call initiated on network i is terminated on a different network j. The access mark-

up is equal tom ≡ a−cT . Thus, for an off-net call, the economic marginal cost is still c, but
the “perceived”marginal cost for the network that initiates the call is c+ a− cT = c+m.

This corresponds to the true marginal cost only when m = 0.

We follow much of the literature (cf. the Introduction) and let networks discriminate

between on-net and off-net calls through the use of two-part tariffs:

Ti(qii, qij) = Fi + piiqii + pijqij,

where Fi is the fixed monthly subscription fee that consumers pay to network i, pii and qii

are the price and quantity of on-net call minutes, and pij and qij are the respective price

and quantity for off-net call minutes from network i to network j. The advantage of such a

simple multi-part tariff structure is that we will be able to go a long way in characterizing

the equilibrium even with general demand and general calling patterns.

Consumer preferences over networks and call demand. The market consists of a

continuum of size 1 of consumers. A consumer is indexed by his relative preference for the

two networks, where we normalize the space of preferences to x ∈ X ≡ [0, 1]. To simplify

expressions, we stipulate that consumers are uniformly distributed over X, though it is

straightforward to extend results in this direction. The two networks’own “attributes”

are represented by their locations at the two extremes x1 = 0 and x2 = 1. Preferences and

networks’ locations may relate to the brand image that networks have created through

marketing and services directed at specific customer groups (cf. footnote 2).

If a consumer at location x subscribes to network i, he bears a disutility or “transport

cost” τ |x− xi| with τ > 0. Consumers receive a fixed utility u0 from being connected.
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We assume that u0 is large enough so that all consumers connect to some network. This

convenient assumption may be understood to reflect the fact that most markets for fixed

or mobile telephony are highly saturated.

Once a call is placed to somebody, its length depends on the call price. Given prices

per minute of pii and pij, consumers demand calls of length qii = q(pii) and qij = q(pij),

with demand elasticity η(p) = −pq′(p)/q(p). The level of consumer surplus associated with
this demand function is denoted by vii = v(pii) for on-net calls, and similarly vij = v(pij)

for off-net calls. This indirect utility function v(·) has standard properties. In particular,
it holds for the respective price p and quantity q that dv/dp = −q.

Calling patterns. The novel ingredient in our model is that consumers differ in their

individual calling patterns. The latter are represented by a function G(y|x) on X2, the

likelihood with which a consumer of preference (“location”) x will call consumers at lo-

cations y′ ≤ y, with G(0|x) = 0 and G(1|x) = 1 for all x ∈ X.6 Depending on whether
the chosen recipient belongs to the same network or not, the respective call minutes will

then equal qii or qij. G(y|x) is assumed to be continuously differentiable in (x, y), and

non-decreasing in y with density g(y|x). This density may be zero for certain (x, y) ∈ X2.

A uniform calling pattern is obtained when G(y|x) ≡ GU(y|x) = y.

We invoke two assumptions throughout our analysis. As much of the literature that we

discussed in the Introduction, we stipulate that, across the whole market, networks have

symmetric demand (“Network Symmetry”). Also, we make the assumption of “Commu-

nication Symmetry”, implying that call preferences are reciprocal.

Network Symmetry g(y|x) = g(1− y|1− x) for all (x, y) ∈ X2.

Communication Symmetry g(y|x) = g(x|y) for all (x, y) ∈ X2.

Below we provide conditions for when, in equilibrium, there will be a unique cutoff

customer type x̂ such that all x < x̂ subscribe to network 1 and all x > x̂ subscribe to

network 2. For given x̂, we define the total expected number of on-net calls on network 1

by

L11(x̂) =

∫ x̂

0

G(x̂|x)dx,

6For our purposes, we could also suppose that each consumer makes the mass one of phone calls.
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and the total expected number of off-net calls by

L12(x̂) =

∫ x̂

0

[1−G(x̂|x)] dx.

Since network 1 has the mass x̂ of subscribers who each makes a unit mass of calls, it

holds that L11(x̂) + L12(x̂) = x̂. In a similar manner, for network 2 we define on-net calls

L22(x̂) =
∫ 1
x̂

[1−G(x̂|x)] dx and off-net calls L21(x̂) =
∫ 1
x̂
G(x̂|x)dx, with L22(x̂)+L21(x̂) =

1 − x̂. Note that Communication Symmetry implies that, on aggregate, traffi c between
networks is balanced: L12(x̂) = L21(x̂) for any given x̂.

Our analysis rests on the following definition of “concentrated”calling patterns.

Definition. Calling pattern G2 is more concentrated than calling pattern G1 if customers

with location 0 < x < 1/2, i.e. those who prefer network 1, are less likely under G2 to

call customers with a stronger preference for network 2 than under G1: For all y ∈ [x, 1)

it holds that 1−G2(y|x) < 1−G1(y|x).

This definition takes into account that alwaysG(0|x) = 0, G(1|x) = 1, andG(1/2|1/2) =

1/2.7 By Network Symmetry, this definition also extends to locations 1/2 < x < 1: It

follows that for all y ∈ (0, x] we have G2(y|x) < G1(y|x), i.e., customers with a preference

for network 2 are less likely under G2 to call customers with a preference for network 1

than under G1. In the following, we simply will call a calling pattern “concentrated”when,

according to the above definition, it is more concentrated than the uniform calling pattern

GU .

Calling pattern example. In what follows, we will obtain explicit expressions for our

equilibrium characterization, as well as additional implications, by using the following

family of calling patterns. Each customer calls with probability 1− λ randomly someone
else, while with probability λ he makes a call to someone in his personal “calling circle”.

For customers who are not too close to the “corners”x = 0, 1, calling circles are defined

symmetrically around the customer’s own location, namely by a distribution functionH(z)

with support z ∈ [−ε, ε] for some ε ∈ (0, 1/2) and symmetric density h (z). We then obtain

the following parameterized family of distribution functions:

Gλ(y|x) = (1− λ) y + λH(y − x). (1)

7Hence, for the sake of brevity we have not included into the definition the calling patterns at the
“corners”x = 0, 1. There, for y = x, the requirements can only hold weakly, as G(0|0) = 0 and G(1|1) = 1.
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Realistically, ε should be relatively small, so that the specification of Gλ(y|x) in (1), which

is valid for ε ≤ x ≤ 1− ε, applies to most consumers. In fact, for our subsequent analysis
it is then inconsequential how we specify calling patterns for those consumers who have

the most extreme brand preferences: x < ε and x > 1 − ε. For completeness, we specify
there

Gλ (y|x) = (1− λ) y + λ [H(y − x) +H(y + x)−H(2− y − x)] .

Literally speaking, the bits of the calling clubs that “stick out”are thereby folded back

into the preference space. The chosen specification satisfies everywhere Network Symmetry

and Communication Symmetry. It is further convenient to denote the dispersion of calls

within the calling circle by8

δ =

∫ ε

−ε
|x|h(x)dx = 2

∫ ε

0

xh(x)dx ≤ ε.

With this notation at hand, we obtain, when the marginal consumer satisfies x̂ ∈ [ε, 1− ε],
for on-net calls of network 1, through partial integration that

L11 (z) = (1− λ) z2 + λ

∫ z

0

H(z − x)dx = (1− λ) z2 + λ

(
z − δ

2

)
. (2)

Utility. Given x̂, for any consumer x the net utility from subscribing to network 1 is

given by

V1(x, x̂) = v1(x, x̂) + u0 − F1 − τx,

where

v1(x, x̂) = G(x̂|x)v(p11) + [1−G(x̂|x)] v(p12).

Recall that on network 1 a consumer of type x makes on-net calls with probability G(x̂|x)

and off-net calls with the complementary probability 1−G(x̂|x).

If the consumer subscribes, instead, to network 2, his utility is

V2(x, x̂) = v2(x, x̂) + u0 − F2 − τ(1− x),

with

v2(x, x̂) = [1−G(x̂|x)] v(p22) +G(x̂|x)v(p21).

8For example, if H is a uniform distribution with density h(z) = 1/2ε then δ = ε/2, or if H is a tent
distribution with density h(z) = (ε− |z|) /ε2 we have δ = ε/3.
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Market game. At t = 1, for any given reciprocal access charge, networks compete for

consumers by simultaneously making contract offers Ti. At t = 2, consumers subscribe and

place calls. At this stage, all payoffs are realized. Below in Section 5, we will also consider

an initial stage t = 0 where networks jointly choose a profit-maximizing reciprocal access

charge.

Section 3 solves for networks’optimal call prices for given market shares. Here, the

focus is on networks’optimal price discrimination strategy for on-net and off-net calls.

Section 4 determines the symmetric Nash equilibrium in multi-part tariffs. Section 5

considers the choice of profit-maximizing access charges.

3 Using On- and Off-Net Tariffs for Price Discrimi-
nation

Given the contract T1, each subscriber at location x ≤ x̂ of network 1 yields expected

profits equal to the sum of the fixed part F1, the expected call profits

π1(x, x̂) = G(x̂|x)(p11 − c)q(p11) + [1−G(x̂|x)] (p12 − c−m)q(p12),

and the expected termination profits

R12(x, x̂) = mq(p21)

∫ 1

x̂

g(x|x′)dx′.

We can thus write the total expected profits that network 1 obtains from a given subscriber

at location x as

Π1(x, x̂) = π1(x, x̂) + F1 +R12(x, x̂)− f.

Total expected profits of network 1 can now be written as

Π1 (x̂) =

∫ x̂

0

Π1(x, x̂)dx

= x̂ (F1 − f) + L11(x̂)(p11 − c)q(p11) (3)

+L12(x̂)(p12 − c−m)q(p12) + L21(x̂)mq(p21).

Similar expressions can be obtained for network 2.

9



Optimal prices. Take the marginal subscriber x̂, and thus the networks’market shares

x̂ and 1− x̂, as given. We consider how networks optimally choose on- and off-net prices
so as to maximize profits, holding these market shares constant.

More specifically, we consider the following program. We take as given the gross utility

level that the marginal consumer must obtain:

V1(x̂, x̂) ≥ V .

Note that in equilibrium the utility level V will be determined by the offer of the competing

network, i.e., V = V2(x̂, x̂). For given x̂ and V , we then solve for the choices p11 and p12 that

maximize Π̄1. We first relax this program by only considering the participation constraint

of the marginal consumer x = x̂ but not those of consumers x < x̂, and then state a

suffi cient condition for when (both on- and off-equilibrium) the solution to the relaxed

program is indeed a solution to the original one.

Let now

L̂11(x̂) = x̂G(x̂|x̂)

be the total number of on-net calls on network 1 that would arise if all subscribers of

network 1 had the same calling pattern as the marginal subscriber x̂. With symmetric

market shares we have L̂11(1/2) = 1/4. Define likewise the number of off-net calls that

would obtain if all subscribers had the same calling pattern as the marginal subscriber

L̂12(x̂) = x̂(1−G(x̂|x̂)).

For network 2 we define L̂22(x̂) = (1− x̂)(1−G(x̂|x̂)) and L̂21(x̂) = (1− x̂)G(x̂|x̂).

Proposition 1 Take the relaxed program of the two networks, where for each firm only

the participation constraint of a given marginal customer x̂ binds. Then, network i′s prices

for on-net calls satisfy
pii − c
p
ii

=
1

η(p
ii
)

(
1− L̂ii(x̂)

Lii(x̂)

)
, (4)

while those for off-net calls satisfy

pij − c−m
pij

=
1

η(pij)

(
1− L̂ij(x̂)

Lij(x̂)

)
. (5)

When τ is suffi ciently large, then for any market share x̂ these expressions characterize

the optimal prices for the two networks in the unrelaxed program.

10



Proof. See Appendix.

When the calling pattern of the average infra-marginal subscriber is the same as that

of the marginal subscriber x̂, as is the case with the uniform calling pattern GU , then

L̂ii(x̂) = Lii(x̂) and L̂ij(x̂) = Lij(x̂). Proposition 1 then yields the standard (perceived)

marginal-cost pricing result pii = c and pij = c + m. Yet, when the marginal subscriber

makes more off-net calls and fewer on-net calls than the average subscriber, then it holds

that pii > c and pij < c+m. Intuitively, raising the on-net price above marginal cost and

lowering the off-net price below marginal cost allows the network to extract more of the

“information rent”of infra-marginal subscribers, who will not switch networks when they

have to cede slightly more of their surplus. The pricing formula in Proposition 1 trades off

the increase in profits that is made from infra-marginal subscribers with the compensation

that must be given to the marginal subscriber in terms of an adjusted fixed fee.

To further foster the intuition, take the case with symmetric market shares, x̂ = 1/2,

and also suppose for the moment that access is at cost, m = 0. In this case, suppose now

that contrary to the derived optimal tariffs, a network would charge uniform prices. Note

that the marginal subscriber now cares equally about on-net and off-net call charges, and

so does not mind if the on-net charge rises so long as there is a corresponding reduction in

the off-net charge. However, the infra-marginal users of the respective network make less

off-net calls, so that the network’s profits are increased if the on-net call charge is raised

and the off-net charge reduced.

Symmetric market shares. Given our assumption of Network Symmetry, for the sub-

sequent characterization of a market equilibrium the case with symmetric market shares,

x̂ = 1/2, will be most prominent. Observe first that from the definition of more concen-

trated calling patterns, the respective numbers of on-net calls, L11(1/2) and L22(1/2), are

strictly higher when calling patterns are more concentrated. Likewise, the respective num-

bers of off-net calls, L12(1/2) and L21(1/2), are strictly lower. As, given symmetry, the mar-

ginal customer at x̂ = 1/2 always makes half of his calls on-net and the other half off-net,

we have, regardless of how concentrated calling patterns are, L̂11(1/2) = L̂12(1/2) = 1/4.

From these observations we have immediately that as calling patterns become more con-

centrated relative to GU prices in Proposition 1 become more distorted: The multiplier

1 − L̂ii(1/2)
Lii(1/2)

> 0 in expression (4) increases, which pushes up pii > c, and the multiplier
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1− L̂ij(1/2)

Lij(1/2)
< 0 in expression (5) decreases, which pushes down pij < c+m.

For our following analysis it is convenient to restate this result by introducing some

additional notation. We define µ as a measure of how the average number of on-net calls

per subscriber changes as the marginal subscriber is shifted away from the symmetric

market share x̂ = 1/2:

µ =
d

dx̂

(
L11(x̂)

x̂

)∣∣∣∣
x̂=1/2

. (6)

Recall now that from Communication Symmetry it follows that traffi c between networks is

always balanced: L12(x̂) = L21(x̂). From Network Symmetry, in turn, we have, in addition,

that L21(x̂) = L12(1− x̂). At x̂ = 1/2 these two identities can only hold when

L′12(1/2) = 0. (7)

In words, a marginal change of x̂ at x̂ = 1/2 does not affect the number of off-net calls

that are made from network 1.9 Using expression (7), we obtain the following useful

transformation of expression (6):

µ = − d

dx̂

(
L12(x̂)

x̂

)∣∣∣∣
x̂=1/2

=
L12(x̂)

x̂2
− L′12(x̂)

x̂

∣∣∣∣
x̂=1/2

= 4L12(1/2).

Note now that L12 (1/2) = x̂2|x̂=1/2 = 1/4 holds for a uniform calling pattern, so that in

this case we have µ = 1. Instead, for all more concentrated calling patterns the number of

off-net calls at x̂ = 1/2 is strictly smaller, so that µ < 1. In fact, from our definition of a

more concentrated calling pattern we have that µ strictly decreases as the calling pattern

becomes more concentrated. Note in addition that for the marginal consumer we have,

given Network Symmetry, L̂11 (1/2) = 1/4. Taken together, these simplified expressions

for L12 (1/2) and L̂11 (1/2) can now be substituted into the expression for the optimal on-

net prices of network 1 in expression (4). Given Network Symmetry, the same can be done

for network 2, while with regards to off-net prices we can simply use that L̂ij(1/2) = 1/4

and that Lij(1/2) = 1/2−Lii(1/2). We thereby obtain the following results for symmetric

market shares.
9More explicitly, Network and Communication Symmetry together imply that the following two effects

are exactly offsetting when we consider a change of the marginal consumer at x̂ = 1/2: On the one hand,
an increase in x̂ expands the market share of network 1 and thus the total number of calls that are made
from this network; on the other hand, as more consumers switch to network 1, calls that were previously
off-net are turned into on-net calls.
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Corollary 1 With symmetric market shares, on-net and off-net prices are

pii − c
p
ii

=
1

η(p
ii
)

(
1− µ
2− µ

)
,

pij − c−m
pij

= − 1

η(pij)

(
1− µ
µ

)
, (8)

where µ < 1 holds for concentrated calling patterns and decreases strictly as calling patterns

become more concentrated.

4 Market Equilibrium

To characterize the market equilibrium, it is convenient to introduce one more piece of

notation. We denote by

Ĝ(x̂) = G(x̂|x̂)

the number of on-net calls of the marginal customer x̂. Clearly, Ĝ(0) = 0, Ĝ(1/2) = 1/2,

and Ĝ(1) = 1. We assume that Ĝ is differentiable at x̂ = 1/2, and further define

µ̂ =
d

dx̂
G(x̂|x̂)

∣∣∣∣
x̂=1/2

= Ĝ′(1/2). (9)

Since Ĝ(x̂) is the marginal subscriber’s number of on-net calls on network 1, its derivative,

µ̂, measures how this number varies as the marginal subscriber changes. With a uniform

calling pattern, we have µ̂ = 1, since the number of calls that the marginal customer, just

as any other customer, makes to a given network is just equal to the respective market

share. When the calling pattern is concentrated, then µ̂ < 1, and a more concentrated

calling pattern implies that µ̂ decreases. Intuitively, when the calling pattern is more

concentrated, then as the marginal customer shifts, the fraction of calls that he makes

to either network is less closely tied to networks’market shares but more closely to the

customer’s own location. Before we further illustrate this with the help of our example,

we first provide a formal argument for why µ̂ decreases as calling patterns become more

concentrated. Recall that, by network symmetry, for any two calling patterns G1 and G2

it holds that Ĝ1(1/2) = 1/2 = Ĝ2(1/2). If G2 is more concentrated than G1 according to

our definition, then for all 0 < x̂ < 1/2 (1/2 < x̂ < 1) it holds that Ĝ2(x̂) > (<) Ĝ1(x̂), so

that the respective derivatives at x̂ = 1/2 must indeed satisfy µ̂2 < µ̂1.

In terms of our example, where we use the family of calling patterns Gλ(·), we apply
the previously introduced definition (6) to (2), obtaining that µ = 1 − λ (1− 2δ), with

13



δ ≤ ε < 1/2. Recall that µ measures the number of off-net calls for a network relative

to that of on-net calls, where µ = 1 for the uniform calling pattern. In the example, µ

is intuitively strictly lower when it is more likely that any customer makes a call to his

calling circle (higher λ) or when the circle is more concentrated (low δ). Furthermore, we

have from (1) and (9) that µ̂ = 1 − λ. This expression is particularly revealing. With a
uniform calling pattern, we already observed that as the marginal customer x̂ increases,

his fraction of calls made to network 1 increases one-by-one with the market share of this

network, so that µ̂ = 1. This clearly corresponds to the case where λ = 0 in our example,

i.e., when there are no calling circles. At the other extreme, when a customer only makes

calls to his calling circle and no random calls, then the fraction of calls that the marginal

customer makes to either network is completely independent of his location, so that µ̂ = 0

when λ = 1.

For our following analysis both the parameter µ, as defined in expression (6), and the

newly defined parameter µ̂ will play a key role. Both strictly decrease as the calling pattern

becomes more concentrated but capture different aspects of calling patterns. As the calling

pattern becomes more concentrated, a shift of the marginal customer around x̂ = 1/2 has

a smaller impact on the average number of on-net calls per subscriber, i.e., these are less

closely tied to the identity of the marginal costumer; and also the number of on-net calls

of the marginal costumer is less closely tied to market share. Somewhat loosely speaking,

the decrease in both µ and µ̂ results from the fact that as calling patterns become more

concentrated, market shares are less relevant for how much customers make use of on-net

instead of off-net calls.

The marginal cost of expanding market share. Throughout the subsequent analy-

sis we assume existence of a unique symmetric equilibrium in pure strategies.10 As

the marginal consumer must be indifferent between the offers of the two networks, i.e.,

V1 (x̂, x̂) = V2 (x̂, x̂), we have

F1 = F2 + v1(x̂, x̂)− v2(x̂, x̂) + τ(1− 2x̂). (10)

10A proof of existence and uniqueness of equilibrium follows the same steps as in Laffont et al. (1998b)
and is therefore omitted here. It again involves the condition that transport cost τ must be high enough,
in order to avoid multiple solutions for equilibrium market shares arising due to network effects.
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From this we obtain

dF1
dx̂

= Ĝ′(x̂) (v11 + v22 − v12 − v21)− 2τ ,

which at a symmetric equilibrium candidate and after substituting from (9) becomes

dFi
dx̂

∣∣∣∣
x̂=1/2

= −2 [τ − µ̂ (vii − vij)] . (11)

Expression (11) captures how expensive it is for a network to shift the marginal sub-

scriber and, thereby, capture market share. In the original Hotelling model the respective

marginal cost would be just 2τ . This remains true when on- and off-net call prices are

identical, as then vii = vij. On the other hand, when off-net calls are more expensive

than on-net calls, vii > vij holds and tariff-mediated network externalities are created.

It then becomes less expensive for a network to expand its market share. For pii > pij

and thus vii < vij the opposite holds. Importantly, the marginal cost of expanding a net-

work’s market share (11) is affected by the value of µ̂ if there are tariff-mediated network

externalities. Recall that µ̂ = 1 holds with uniform calling patterns, while it is strictly

lower with concentrated calling patterns. Thus tariff-intermediated network externalities,

as captured in expression (11), become gradually less important as calling patterns become

more concentrated. This observation will be important below when we analyze how access

charges are optimally chosen so as to dampen competition.

Equilibrium profits. We will now derive networks’fixed fees and, from (3), profits

in a symmetric equilibrium. Given the tariff of network 2 and the optimal structure of

call prices discussed above, network 1 maximizes its profits by adjusting its fixed fee, or

equivalently, its market share.

In a symmetric equilibrium, we have pii = pjj and pij = pji. It is then convenient to

denote the per-call profits from on-net calls by

rii ≡ (pii − c)q(pii).

Also consider

(pij − c−m)q(pij) +mq(pji), (12)

which represents network i’s profits from an exchange of one pair of off-net calls with

network j.
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Recall now that for off-net calls the perceived marginal cost is given by c + m. Note

next that in a symmetric equilibrium we have that pij = pji, so that also the respective

quantities are equal: q(pij) = q(pji) when x̂ = 1/2. Then, expression (12) simplifies to

rij ≡ (pij − c)q(pij).

In the proof of Proposition 2 below we show how, after substituting for dF1/dx̂ from

(11) and using symmetry, we can solve the first-order condition for profit-maximization to

obtain

F ∗ = f + τ − rii − µ̂ (vii − vij) . (13)

The equilibrium fixed fee increases in the per-customer fixed cost and in the transport

cost, as usual. In fact, in a standard Hotelling model without network externalities, we

would have F ∗ = f + τ . There are now two differences: On-net and off-net prices may be

different, so that vii 6= vij, and on-net revenues are not zero, given that prices are not set

equal to (perceived) costs when calling patterns are non-uniform. Substituting F ∗ back

into expression (3) for profits leads to the following outcome.

Proposition 2 In a symmetric equilibrium, profits for each network are equal to

Π̄∗ =
1

2

[
τ − µ̂(vii − vij) +

µ

2
(rij − rii)

]
. (14)

Proof. See Appendix.

In the original Hotelling model profits would be equal to τ/2. Thus, the first term

in expression (14) captures, in the traditional manner, how profits depend on the substi-

tutability of networks’services. The second term in expression (14) captures the effect of

the tariff-mediated network externalities on the marginal subscriber. If the term µ̂(vii−vij)
is positive, as a result of off-net prices above on-net prices, then these externalities are pos-

itive and it is easier to capture market share. When on-net prices are above off-net prices,

on the other hand, then these externalities are negative, and it is more costly to capture

market share. Importantly, when it is easier to capture market share, competition is more

intense, and equilibrium profits are lower. The relevance of this term depends on the rele-

vance of the calling circle of the marginal consumer, as described by µ̂. In fact, we already

commented on this in detail after deriving expression (11) above.
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We come now to the third term in expression (14), which describes how profits due

to infra-marginal subscribers change with the difference between on- and off-net prices.

Starting from symmetric market shares, when a network deviates and captures more mar-

ket share, it increases the number of on-net calls at the expense of decreasing the number

of both outgoing and incoming off-net calls. Observe also that rij − rii captures the true
difference in profits between off-net and on-net calls, i.e., evaluated at the true marginal

cost. The third term in (14) thus captures how, through turning off-net calls into on-net

calls, a marginal increase in market share, starting from x̂ = 1/2, impacts on profits. As

this effect works through all subscribers on a given network, its importance depends on

the average behavior of subscribers, as described by the term µ.

Taken together, the second and third terms in expression (14) capture the tariff-induced

costs and benefits from acquiring customers.11 Both costs and benefits decrease for more

concentrated calling patterns, i.e., when both µ and µ̂ decrease. Generally, there is thus

not a monotonic impact of more or less concentrated calling patterns on network profits,

at least not while access charges are chosen exogenously and thus remain unchanged.

Waterbed effect. Before we ask in the following Section how networks would optimally

set the access price so as to maximize equilibrium profits, as derived in Proposition 2, we

shed more light on the derived expressions by considering the so-called “waterbed effect”.

As we discuss in more detail below, in many jurisdictions around the world, wholesale

access charges are subject to some form of regulation. While changes in access charges

should obviously directly affect the price for off-net calls and networks’termination rev-

enues, policy-makers also have a practical interest in understanding how their intervention

may influence the structure of other prices and, ultimately, the customer’s bill, which is

frequently referred to as a “waterbed”or “seesaw”effect. This possible rebalancing in the

price structure is an information readily obtainable from price data.12 In particular, with

multi-part tariffs a change in the access price translates into a change in off-net prices and

11Note that the derivation of the form of fixed fees (13) and profits (14) does not depend on call prices
being at their equilibrium levels or even being non-uniform. If firms were constrained to offer uniform
two-part tariffs, i.e., if they were to charge identical prices for on- and off-net calls, then the second and
the third term in expression (14) would be zero. Profits would be constant at τ/2 and thus independent
of the level of the access charge and the shape of the calling pattern. Under uniform pricing, therefore,
the access charge is profit-neutral even for non-uniform calling patterns. See Section 6 for a more detailed
discussion of the impact of price regulation.
12Cf. Genakos and Valletti (2011).
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the fixed fees.

Inspection of (13) shows that the access mark-up m has an indirect effect on the

equilibrium fixed fee through the off-net indirect utility, vij, since the latter depends on

the off-net price pij and thus on m. Suppose now that the elasticity of demand for call

minutes is constant and in the elastic range: η(p) = η > 1. In this case, from Corollary 1

we can solve for

pij = (c+m)
µη

µ (η − 1) + 1
,

which does not depend on µ̂ but increases in m and µ. For the fixed fee we obtain

dF ∗

dm
= −µ̂qij

dpij
dm

= −µ̂ pijqij
c+m

.

Recall now that a more concentrated calling pattern leads to a lower µ̂, which dampens the

waterbed effect, i.e., it mitigates the decrease in the fixed fee. This happens because with

concentrated calling patterns additional marginal subscribers will make relatively more

off-net calls. These customers become even less attractive with a higher access charge,

so that the compensation in the fixed fee offered is lower. Apart from the direct effect

through µ̂ there is also an indirect effect of a change in concentration of calling patterns,

namely through µ: A lower value of µ, as implied by a more concentrated calling pattern,

reduces pij and revenues pijqij (since demand is elastic), thus the indirect effect of µ also

dampens the waterbed effect. Thus we can conclude unambiguously that under a more

concentrated calling pattern the waterbed effect on fixed fees will be smaller.

For the family of calling patterns Gλ, we can proceed somewhat further. In particular,

in the limit, when consumers make only calls to their circle (λ = 1), the fixed fee is

independent of the access charge, such that there is no waterbed effect on the fixed fee.13

Generally, we have from

dF ∗

dm
= −(1− λ) (c+m)−η

(
1− 1

η
+

1

η

1

1− λ (1− 2δ)

)η−1
that when calling patterns are very concentrated (λ→ 1), there should only be a marginal

waterbed effect with respect to the fixed fee.

13The access charge has, however, an effect on off-net prices also in this case.
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5 Dampening Competition through Access Charges

In this section we will determine the jointly profit-maximizing reciprocal access charge a.

This is the access charge that networks would want to negotiate if they were free to choose

between themselves.

When firms set the reciprocal access charge, they maximize joint profits, which in a

symmetric equilibrium are equal to 2Π̄∗. There are now two opposing effects that need to

be considered, corresponding to the second and third terms in expression (14) for profits.

We referred to these terms as the costs and benefits from capturing additional market

share. Take first the costs, i.e., the second term in expression (14). Decreasing the access

charge pushes off-net prices down (cf. Proposition 1), leading to a decrease in the utility

difference vii − vij. This makes joining a smaller network more attractive for customers
and, thereby, dampens competition through increasing the costs of capturing market share.

From this perspective alone firms should thus lower a.

However, lower off-net prices decrease the profits rij = (pij − c)qij from making and

receiving off-net calls, at least as long as the off-net price induced by a lies below the

“monopoly”call price14

pM = arg max
p

[(p− c)q(p)].

Recall that a does not affect the price of on-net calls, pii. Hence, when a decreases and

thus also the off-net price pij decreases, then the difference between off-net and on-net

profits, rij− rii, decreases as well. From expression (14) this pushes equilibrium profits Π̄∗

down. Put differently, when a increases, the effect that works through an increase in the

benefit of acquiring customers leads to less intense competition and thus increases profits.

The first effect is stronger when µ̂ is large, which is the case for a less concentrated

calling pattern. Then, a shift of the marginal customer has a larger effect on his share of

on-net calls. The other previously described effect of a change in a, which works through

a change in the benefit of acquiring customers when a increases, also increases with a less

concentrated calling pattern, i.e., with a larger µ, since then more off-net calls will be

transformed into on-net calls as the marginal customer changes. As shown in the proof

of the Proposition 3 below, from these two opposing effects we obtain that the optimal

off-net price that the networks wish to jointly implement through their choice of the access

14For simplicity, we stipulate here that this problem has a unique finite solution pM . This corresponds
to η > 1 in the constant elasticity case, with pM = cη/ (η − 1).
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charge is indeed strictly decreasing in µ̂ and strictly increasing in µ:

pij − c
pij

=
1

η (pij)

(
1− 2µ̂

µ

)
. (15)

When calling patterns are uniform, as in Laffont et al. (1998b), such that µ̂ = 1 and

µ = 1, from (15) we obtain immediately pij < c, which together with Proposition 1 results

in m < 0, or a < cT , as in Gans and King (2001). In order to obtain the optimal access

charge we substitute the equilibrium prices from Proposition 1 into (15).

Proposition 3 The jointly profit-maximizing access mark-up is

m∗ = c
1− 2µ̂

µ [η (pij)− 1] + 2µ̂
. (16)

In particular, the corresponding access charge a∗ = cT + m∗ is strictly above the cost of

termination (a∗ > cT ) if calling patterns are suffi ciently concentrated so that

µ̂ <
1

2
, (17)

while a∗ < cT applies when µ̂ > 1
2
.

Proof. See Appendix.

Whether the profit-maximizing access charge is above or below the cost of termination

is thus closely tied to the calling pattern of the marginal customer, as summarized by the

parameter µ̂. When calling patterns are suffi ciently concentrated, the result that Gans

and King (2001) obtained with a uniform calling pattern is overturned, as then the access

charge is chosen above cost in order to dampen competition. In other words, the balance

between the costs and benefits of expanding market share changes for more concentrated

calling patterns, with the benefits of higher off-net prices outweighing their cost.

Note that expression (16) for the access charge a∗ (or the respective margin m∗) is

only implicit, given that η(pij) on the right-hand side depends on the access charge (cf.

Proposition 1). This is, however, no longer the case with isoelastic call demand, η(pij) = η

- a specification that we have already made use of when discussing the waterbed effect.

Then, we can substitute η into (16) to immediately obtain the optimal access charge

margin.

Proposition 3 provides a clear cut-off result on when the profit-maximizing access

charge is above or below the cost of termination cT , namely whether µ̂ < 1
2
or µ̂ > 1

2
. This
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supports our claim that we predict above-cost access charges when calling patterns are

suffi ciently concentrated. As we noted, however, the optimal access charge need not shift

monotonically as we make calling patterns more concentrated. Still, this is the case in our

example, for which we obtain from substitution

m∗ = c
2λ− 1

(η + 1) (1− λ) + 2 (η − 1)λδ
. (18)

Note first that here the access charge margin is strictly negative if and only if consumers

make a “random”call less than half of the time (as 1 − λ < 1/2). Further, using that

λ ≤ 1 and that δ < 1, next to η > 1, confirms that dm∗/dλ > 0, so that the access charge

(margin) strictly increases as it becomes more likely that consumers call their respective

calling circles.15 When the calling circle becomes itself less dispersed, as δ decreases, this

leads likewise to an increase of m∗ if λ > 1/2.

On-net vs. off-net prices. Having determined the jointly profit-maximizing access

charge, we can finally return to the question of whether on-net prices will be higher or

lower than off-net prices if networks adopt this access charge. While price discrimination

makes off-net prices lower than the respective cost, the access charge effect pushes in the

opposite direction, to the extent that m∗ > 0, as characterized by Proposition 3. The

following result shows that the outcome is determined by the relative strength of these

two countervailing effects.

Proposition 4 The on-net price is lower than the off-net price, at the profit-maximizing

access charge, iff

µ̂ <
1

2− µ
µ

2
. (19)

Proof. See Appendix.

As we already noted, the effects of more concentrated calling patterns involve contra-

dictory forces in this case, and in contrast to Proposition 3 we thus do not obtain clear-cut

results in general. Still, for our example we obtain a simple cut-off rule. To see this, it

is first instructive to reproduce the price discrimination result for the example, where we

obtain

pii − c
pii

=
1

η

λ (1− 2δ)

1 + λ (1− 2δ)
, and

pij − c−m
pij

= −1

η

λ (1− 2δ)

1− λ (1− 2δ)
. (20)

15Formally, the sign of the derivative is given by (η + 1) + 2δ(η − 1).
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From this we see clearly the direct effect of concentration on the (relative) profit margin,

but also how the off-net price is additionally affected by the marginm on the access charge.

Substituting for the optimal choice m∗ from (18), we obtain that the on-net price is below

the off-net price when

λ ≥ λ∗ =
1− 6δ +

√
9− 28δ + 36δ2

4(1− 2δ)
. (21)

That is, in our example calling circles must be suffi ciently relevant for off-net calls to be

more expensive than on-net calls. Note that the condition is stricter when δ is low, i.e.,

when calls made to the calling circles are less dispersed. This effect arises because, as we

observed, less dispersion of calls made to calling circles implies lower off-net prices, which

counters the effect of the rising access charge.

Recall from the Introduction, that there is evidence that calls are more concentrated

on-net than what would be predicted by market shares alone (“call imbalances”). In our

model, where in equilibrium market shares are symmetric, there are two forces at work,

namely consumers’exogenous calling partners and the relation of on-net to off-net prices.

As we noted above, one possible interpretation of the quantity q is in terms of minutes per

call. Then, in our example, for all λ ≥ λ∗ both the non-uniform calling patterns and the

difference in on-net vs. off-net prices work towards increasing the imbalance in terms of call

minutes. Recall again that condition (21), which implies that on-net prices are (weakly)

below off-net prices, is stricter than the condition µ̂ = 1−λ ≤ 1/2, which implies that the

access charge is (weakly) above cost. For instance, suppose that the “calling circle”H(·)
is uniform and comprises 60% of all consumers, which are then called uniformly, so that

δ = 0.15.16 Then, we obtain λ∗ = 88%: To ensure that on-net prices are not above off-net

prices, a consumer must make at least 88% of all calls to his circle.17 The fraction of calls

that are made on-net (cf. expression (2)) is then equal to 81%. In our example, where

16The “width”of the calling circle is 2ε, and from footnote 8, with a uniform distribution it is δ = ε/2.
17Note that the number of calls that are ultimately made to the calling circle equals the sum of λ and

the “random”component 2ε(1− λ).
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market shares are symmetric, the imbalance ratio of calls is also easily calculated as18

Lii(1/2)/x̂

Lij(1/2)/(1− x̂)
=

2− µ
µ

=
1 + λ (1− 2δ)

1− λ (1− 2δ)
,

which for the chosen numerical specification is equal to 4.2 when λ = λ∗. The higher we

choose λ, implying that on-net calls become cheaper than off-net calls, the larger will be

the imbalance ratio.19

6 Regulation

The consumer surplus, in a symmetric equilibrium, is

CS = u0 + 2Lii(1/2)vii + 2Lij(1/2)vij − F ∗ − 2

∫ 1/2

0

τxdx.

Substituting for F ∗ from (13), we have

CS = u0 − f −
5

4
τ + (rii + vii) +

(µ
2
− µ̂

)
(vij − vii). (22)

In a standard Hotelling model consumer surplus would be equal to total welfare minus τ ,

as the latter is then equal to firms’total profits. The introduction of differential on-net

and off-net prices in our model with network externalities leads now, in particular, to the

following differences: First, the sum rii + vii is not equal to first-best surplus (cf. the price

discrimination result in Proposition 1); and, second, there is the presence of the additional

term
(
µ
2
− µ̂

)
(vij − vii). We discuss these terms in more detail below. Further, social

welfare is given by the sum of consumer surplus and firm’s profits:

W = 2Π̄∗ + CS.

In what follows, we consider various policy interventions aimed at maximizing either total

welfare W or consumer surplus CS.

18For completeness, in terms of minutes we obtain the imbalance ratio

2− µ
µ

q(pii)

q(pij)
=
1 + λ (1− 2δ)
1− λ (1− 2δ)

(
η + 1−λ−2δλ

1−λ+2δλ

η − (1−2δ)λ
1+λ−2δλ

)−η
.

19For a comparison, the Italian data in footnote 1 imply imbalance ratios of, respectively, 4.2 (TIM),
6.9 (Vodafone), 9.2 (Wind), and 4.4 (H3G).
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6.1 Regulating Access Charges

We ask next how the networks’profit-maximizing access charge, as determined in Propo-

sition 3, compares with the access charge that a social planner would optimally set.

Setting access charges to maximize welfare. Suppose that a policy maker’s objec-

tive is to maximize total welfare W . Presently, and in line with most regulatory practice,

the only instrument that we consider is the regulation of the symmetric access charge a.

From the perspective of maximizing welfare, it only matters to the extent that it affects

the effi ciency of off-net prices. (Recall that on-net prices are not affected by a, while the

market outcome along the Hotelling line is always symmetric.) As is intuitive and shown

more formally in the proof of the subsequent proposition, a is thus effi ciently set so that the

resulting off-net price is equal to cost: pij = c. After substituting into the prices obtained

from Proposition 1, this yields the welfare-maximizing access charge

aW = cT + c
1− µ
µ

1

η(c)
. (23)

Proposition 5 A social planner would set a = aW , as given by (23), when he wants

to maximize total welfare. This results in an access price strictly above cost for all con-

centrated calling patterns. The profit-maximizing access charge a∗, as implied by (16), is

socially optimal if and only if

µ̂ = µ/2.

When µ̂ < µ/2 (respectively, µ̂ > µ/2) then aW < a∗ (respectively, aW > a∗).

Proof. See Appendix.

From condition (19), which is stricter than µ̂ < µ/2 if µ < 1, we can see that whenever

networks would opt for a termination charge below the socially optimal value then the

resulting on-net price would be above the off-net price. Thus for only slightly concentrated

calling patterns the qualitative findings of Gans and King (2001) continue to hold.

On the other hand, recall that µ = 1 holds for a uniform calling pattern, so that then

aW = cT . Instead, we have aW > cT for all concentrated calling patterns. Intuitively,

for non-uniform calling patterns, it is effi cient to set the access charge above cost as firms

tend to set off-net prices below perceived costs, given its use as a discrimination device.
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Proposition 5 also derives conditions when the market outcome would result in the effi cient

access charge, aW , which is only the case when µ̂ = µ/2.

As for Proposition 4, we again obtain a more clear-cut result for our particular example.

We obtain from (23) that

aW = cT + c
λ (1− 2δ)

1− λ (1− 2δ)

1

η
,

so that the welfare-maximizing access charge aW is strictly higher when calling circles

become more relevant (higher λ) or when they become less dispersed (lower δ). Still, we

have aW < a∗ whenever the calling circle is suffi ciently relevant, i.e., if λ is suffi ciently

high. The precise condition, obtained from µ̂ < µ/2, is that

λ >
1

1 + 2δ
. (24)

Hence, for our example we would predict that a welfare-maximizing regulator would want

to set access charges strictly below the unconstrained market equilibrium level whenever

localized calling patterns are suffi ciently important. This case does not arise for uniform

calling patterns (λ = 0).

Setting access charges to maximize consumer surplus. Suppose now, instead, that

the social planner would want to maximize consumer surplus. The social planner’s optimal

solution is then immediately obtained by looking at the last term in expression (22): When

µ̂ < µ/2, to maximize consumer surplus the social planer would want to push down the

access charge as far as possible (e.g., adopt a bill-and-keep system), thereby decreasing pij

and increasing vij. Instead, when µ̂ > µ/2, the social planner would want to push up the

access charge as far as possible, thereby essentially fully choking off the demand for off-net

calls. Hence, the social planner’s program to maximize consumer surplus gives rise to a

“bang-bang”solution.

This extreme outcome is clearly due to the stylized nature of our model, as this ab-

stracts, for instance, from elastic participation in the market (we assumed full coverage).

Still, it illustrates the previously discussed interaction between calling pattern concen-

tration and how the intensity of competition is affected by price discrimination between

off-net and on-net calls and thus by the associated tariff-induced network externalities. In

particular, despite shutting down off-net communications and the associated surplus when
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µ̂ > µ/2, in this range the externality effect intensifies competition for the market via

lower fixed fees, to the benefit of consumers.

Proposition 6 When µ̂ < µ/2 holds, consumer surplus CS is strictly decreasing in the

prevailing access charge a. When µ̂ > µ/2 holds, it is strictly increasing in a.

Incidentally, note thus that when µ̂ < µ/2 holds, then the access charge that prevails

in the unregulated equilibrium will be too high both from the perspective of maximizing

welfare and from the perspective of maximizing consumer surplus. This is another instance

where we see the role played by concentrated calling patterns, as this possibility would

never arise under a uniform distribution. Note finally that as the threshold in Proposition

6 is the same as that in Proposition 5, also the respective cutoff result for the example

applies (cf. condition (24)).

6.2 Imposing Uniform Pricing

In our model networks can price discriminate between on-net and off-net calls. A common

theme in the IO literature is to analyze how firms’ability to price discriminate affects

welfare and consumer surplus.20 In what follows we explore such a policy given its practical

relevance.

The degree of on-net/off-net price discrimination has in fact been a subject of concern

for a number of competition authorities and/or regulators in Europe and elsewhere. For

example, in April 2008, Germany’s Federal Competition Authority (“Bundeskartellamt”)

initiated proceedings against the two largest incumbent mobile telephone network oper-

ators, T-Mobile and Vodafone D2, “on the suspicion of the abuse of a joint dominant

position on grounds of price differentiation between calls within their own networks (on-

net) and calls to other networks (off-net).”21 While the German Competition Authority

discontinued its investigations by the end of 2009, similar complaints against price dif-

ferentiation between on-net and off-net calls have been made in other countries such as
20On second-degree price discrimination see, in particular, Katz (1984) and Stole (2007). However, the

fact that there is no substitution between on-net and off-net calls makes the following analysis more remi-
niscent of models with third-degree price discrimination under oligopoly (cf. Corts, 1998 and Armstrong,
2008).
21See Bundeskartellamt (2010), Examination of Possible Abuse of a Dominant Position by T-Mobile

and Vodafone by Charging Lower On-net Tariffs for Mobile Voice Telephony Services, online at:
http://cms.bundeskartellamt.de/wEnglisch/download/pdf/Fallberichte/B07-170-07-engl.pdf.
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Austria, Belgium (related to the German case), Italy, or Turkey. In 2011, the New Zealand

Commerce Commission also expressed the concern that tariff-mediated network effects can

be strategically used to stifle market competition and to secure market power.

In our setting, an immediate consequence of uniform pricing is that firms’joint profits

are always equal to τ , irrespective of how the access charge is set. This is a standard result

in Hotelling models, though formally it also follows immediately from expression (14) for

Π̄∗, after substituting vii = vij and rij = rii when pii = pij.22 For each firm the optimal

symmetric uniform price p = pii = pij maximizes average perceived effi ciency (i.e., taking

account of the perceived cost of off-net calls rather than the real economic cost):

1

2
[v(p) + q(p)(p− c)]−mq(p)Lij(1/2). (25)

While firms’profits are not affected by m, both total welfare and consumer surplus are

maximized when m = 0 so that the optimal access charge is equal to cost: a = cT , with

resulting uniform price p = c. We now take these observations as a benchmark against

which we compare our previous characterization for when firms can set different on-net

and off-net prices.

When through separate regulation access charges are set equal to cost, it is immediate

from the preceding observations that uniform pricing achieves the highest feasible welfare.

Instead, from Proposition 1 we know that with price discrimination the optimal on-net

price is always set ineffi ciently high, while the optimal off-net price is set ineffi ciently

low when termination is set at cost. Thus the first best cannot be achieved under price

discrimination with a non-uniform calling pattern.

It is more interesting to compare consumer surplus in the two cases. Denote the net

surplus achieved per on-net call by

wii = v(pii) + q(pii)(pii − c),

which thus abstracts from the fixed components u0 and f , as well as from transportation

costs. In addition, denote by wmax the maximum feasible surplus under uniform pricing,

which is obtained when m = 0.

While price discrimination clearly reduces welfare, its impact on consumer surplus is

more subtle. As we repeatedly observed, through creating tariff-induced network external-

22Recall that at symmetric market shares, which prevail in equilibrium, we have that rij = (pij − c)qij
does not directly depend on a.
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ities, a difference between the price of on-net calls and that of off-net calls also affects the

degree of competition. (In fact, recall from Proposition 2 that it affects both the costs and

benefits of acquiring additional consumers.) Using expression (22) for consumer surplus

under price discrimination, we obtain that it is strictly higher than maximal consumer

surplus under uniform pricing when(µ
2
− µ̂

)
(vij − vii) > wmax − wii. (26)

With uniform calling patterns, both the LHS and the RHS of the above expression are equal

to zero when access is regulated at cost. Thus price discrimination and price uniformity

lead to the same result both for welfare and for consumer surplus. This is no longer true

for non-uniform calling patterns. At m = 0 we have from pij < pii for µ < 1 that vij > vii,

i.e., a necessary condition for discrimination to improve consumer surplus is thus that

µ̂ < µ/2. Interestingly, recall that this was also the condition for the equilibrium access

charge a∗ to exceed the welfare maximizing access charge aW . While generally a higher

concentration of calling patterns has thus an ambiguous effect on this condition, in our

example µ̂ < µ/2 holds if and only if calling patterns are suffi ciently concentrated (cf.

condition (24)).

Proposition 7 Suppose that the access charge is set equal to cost: a = cT . Then a ban

on price discrimination between on-net and off-net calls increases total welfare. However,

it can decrease consumer surplus when condition (26) holds, for which it is a necessary

requirement that µ̂ < µ/2.

7 Concluding Remarks

We introduce a flexible model of network competition with non-uniform calling patterns.

The model allows us to analyze the implications of non-uniform calling patterns (“calling

circles”) on equilibrium outcomes as well as profit-maximizing reciprocal access charges.

We show how equilibrium tariffs (on- and off-net call prices, and fixed fees) vary de-

pending on the calling pattern. Concentrated calling patterns can also help to explain

the (on-net to off-net) imbalance ratios that are observed in practice. Our main focus,

however, is to analyze when networks would choose reciprocal access charges above cost

or below cost in order to dampen competition. With uniform calling patterns, it is known
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that this is achieved through setting access charges below cost. We show that this re-

sult is reversed if calling patterns are suffi ciently concentrated: Profit-maximizing access

charges are set above cost, which sustains high off-net prices. Our results on above-cost

access charges also imply that, contrary to other results in the literature, at the profit-

maximizing reciprocal access charge on-net prices can be below off-net prices. We analyze

how these different results are obtained from the interaction of two effects: Competition is

dampened either when it becomes relatively more expensive to capture the marginal cus-

tomer or when having the marginal customer is less profitable. We show how the strength

of either effect changes when calling patterns become more concentrated.

Furthermore, information obtained on the concentration of calling patterns should

inform optimal regulation. We explore this issue with respect to both access charge regu-

lation and a prohibition of discriminating between on-net and off-net calls. In particular,

we derive conditions for when the welfare maximizing access charge is strictly lower than

the one prevailing in an unregulated market, and when an obligation of uniform pricing

can increase welfare and/or consumer surplus.

As in much of the literature on network competition, we restricted consideration to

a model with only two networks. This has the additional benefit of making our findings

comparable to extant results. Also, we are able to offer a simple definition of our concept of

more concentrated calling patterns. A consumer is identified by his (“brand”) preference

over networks, which for two networks we chose to model in a familiar Hotelling fashion,

and by his preference to call particular other consumers. These two preferences are, in the

case of increasingly more concentrated calling patterns, ordered so that consumers prefer

to call those with similar brand preferences. We motivated this, for instance, by the brand

positioning that different networks choose, according to targeted consumer groups, as well

as by networks’regional coverage.

Our modelling ideas readily extend to more general settings involving, in particular,

more than two competing networks. The advantage of the Hotelling setting, where two-

dimensional brand preferences are folded into a single dimension, can be carried over if

it is assumed that consumers’preference space follows the generalized Hotelling model

of Hoernig (2010) and that a consumer’s “club calls” are limited to his own Hotelling

line. More generally, in the spirit of discrete choice models, each consumer could be

identified, first, by a vector of (potentially independently drawn) brand preferences for
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each network and, second, by a calling distribution function that would assign “more-than-

uniform probability”to consumers whose preferences are closer to his own preferences. We

leave a generalization in this direction to future work.

8 Appendix: Omitted Proofs

Proof of Proposition 1. Given constant market shares, network 1’s marginal customer

is determined by the condition V1 (x̂, x̂) = V , which can be restated as F1 = v1(x̂, x̂) +

u0− τ x̂− V . Substituting L̂11(x̂) = x̂G(x̂|x̂) and L̂12(x̂) = x̂(1−G(x̂|x̂)) into network 1’s

profits leads to

Π1 (x̂) = L̂11(x̂)v(p11) + L11(x̂)(p11 − c)q(p11)

+L̂12(x̂)v(p12) + L12(x̂)(p12 − c−m)q(p12) + const.,

where the last term on the right-hand side does not depend on p11 or p12. We obtain from

the maximization of the relevant terms with respect to p11 the first-order condition

(p11 − c)q′(p11) +

(
1− L̂11(x̂)

L11(x̂)

)
q(p11) = 0,

which solves for the expression (4) presented in the proposition. The result for the off-net

price is derived similarly.

Finally, we state a suffi cient condition that allows us to ignore the participation con-

straint of all subscribers with location x < x̂, i.e., when indeed, as presumed in the relaxed

program, V1(x, x̂) ≥ V2(x, x̂) for all x ≤ x̂. We have

V1(x, x̂)− V2(x, x̂) = [v1(x, x̂)− v2(x, x̂)] + τ(1− 2x)− [F1 − F2] ,

where

v1(x, x̂)− v2(x, x̂) = {G(x̂|x)v(p11) + [1−G(x̂|x)] v(p12)}

−{[1−G(x̂|x)] v(p22) +G(x̂|x)v(p21)} .

A suffi cient condition for V1(x, x̂) ≥ V2(x, x̂) holding for all x < x̂ is that

∂

∂x
[V1(x, x̂)− V2(x, x̂)] ≤ 0,
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which is equivalent to

∂G(x̂|x)

∂x
[v(p11)− v(p12) + v(p22)− v(p21)] ≤ 2τ . (27)

While condition (27) is not stated in terms of the primitives alone, as the terms v(·)
depend on the respective prices, note that τ does not enter call prices. Hence, holding

all else constant, we can always choose the degree of horizontal differentiation τ (and

jointly the fixed utility from participation u0) large enough, ensuring that all consumers

participate and that (27) holds everywhere (cf. also Laffont et al., 1998b). (Note that

this uses also that over the compact support [0, 1]2 the continuous function ∂G(x̂|x)/∂x is

bounded.) Q.E.D.

Proof of Proposition 2. Since calls are balanced with L12(x̂) = L21(x̂), and framing the

first-order condition in terms of the market share rather than the fixed fee, we have

dΠ1 (x̂)

dx̂
= F1 − f + x̂

dF1
dx̂

+ L′11(x̂)r11 + L′12(x̂)r12 = 0.

Note next that L′11(x̂) + L′12(x̂) = 1, which yields the first-order condition at a symmetric

equilibrium candidate

F ∗ − f + rii +
1

2

dF1
dx̂

∣∣∣∣
x̂=1/2

+ L′ij(1/2)(rij − rii) = 0.

Using L′ij(1/2) = 0 and substituting finally for dF1/dx̂ from (11) yields expression (13).

To obtain equilibrium profits, in a symmetric equilibrium, and after substituting for

F ∗ from (13), profits (3) become

Π̄∗ =
1

2
(F ∗ − f + rii) + Lij(1/2) (rij − rii)

=
1

2
[τ − µ̂(vii − vij)] +

µ

4
(rij − rii).

Q.E.D.

Proof of Proposition 3. When differentiating profits in (14) w.r.t. m, note first that

at a symmetric equilibrium x̂ = 1/2 does not change. Moreover, from Proposition 1 only

off-net but not on-net prices change with m. Note further that dpij/dm > 0 and that

profits do not directly depend on m. Therefore we can equivalently maximize Π̄∗ over pij.
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We obtain23

2
dΠ̄∗

dpij
= −µ̂qij +

µ

2

[
qij + (pij − c) q′ij

]
=

[
µ

2

(
1− pij − c

pij
η(pij)

)
− µ̂

]
qij = 0,

or
pij − c
pij

=
1

η(pij)

(
1− 2µ̂

µ

)
. (28)

This condition can be solved for pij as

pij = c
µη(pij)

µ (η(pij)− 1) + 2µ̂
.

On the other hand, from (8) we obtain

pij = (c+m)
µη(pij)

µ (η(pij)− 1) + 1
. (29)

Equating and solving for m leads to the result stated in the Proposition. Q.E.D.

Proof of Proposition 4. Equating pij in (28) and pii from (8) leads to 1 − 2µ̂/µ =

(1 − µ)/(2 − µ), or µ̂ = µ/(4 − 2µ). For larger µ̂ we will have pij < pii, due to (28).

Q.E.D.

Proof of Proposition 5. Substituting for CS and concentrating only on the off-net

elements, we obtain

W = 2Π̄∗ + CS =
µ

2
(rij + vij) + const. (30)

Thus the socially optimal off-net price continues to be pij = c even for general calling

patterns, as should be expected. Equating to (29) and solving for a leads to the result in

the text. The profit-maximizing access charge is equal to the socially optimal one if and

only if the relative weights in the objective functions (14) and (30) on rij and vij are equal,

or if µ̂ = µ/2. Q.E.D.

23It is easy to show that the suffi cient second-order condition for a strict local maximum holds for a
constant demand elasticity, which implies also that profits are quasi-concave in pij .
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