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I ntroduction

The adjustment-cost model of the firm is an intageral (dynamic) approach to the
theory of the firm where adjustment costs assogiatgh changes in the level of the
guasi-fixed factors are the source of the timerdgpendence of the firm’s production
decisions (e.g., Lucas 1967; Treadway 1969, 190@hdehild 1971; Mortensen 1973).
Harmemesh and Pfann (1996) present an interestimgeys of the literature on
adjustment costs. The adjustment-cost model offitine has been widely used in
empirical work (e.g., Luh and Stefanou 1993, 198&lsen and Schiantarelli 2003;
Letterie and Pfann 2007; Letterie, Pfann and Ve#i6k0). However, primal and dual
analytical foundations of the production theoryhndgtdjustment costs have not yet been
explored as in the static theory of production.

Several primal representations of the productioohrielogy are defined and
characterized axiomatically in the static theorypodduction, namely the production
sets and the Shephard’'s distance functions (elgepl&ard 1970; Debreu 1959;
McFadden 1978; Fare and Primont 1995). Several rgkkrations of Shephard’s
distance functions have emerged in the productterature allowing extensions of the
Farrell efficiency measures in the static context( Fare, Grosskopf and Lovell 1985,
Chapters 5-7; Fare, Grosskopf and Lovell 1994, @ha®; Briec 1997; Bogetoft and
Hougaard 1998; Chambers, Chung and Fare 1996, T388; and Grosskopf 2000a,
2000b; Chavas and Cox 1999; Haleteal 1999). Specifically, the directional distance
functions approach has guided recently much ofdé&eelopment in efficiency and
productivity analysis (e.g., Chambers 2002, 200&] &t al 2002a, 2002b; Faret al

2005).



In contrast, primal representations of the productechnology in the context of the
adjustment-cost theory of the firm have not yetrbeeplored as in the static theory of
the firm. The production function has been used, general, as the primal
representation of the adjustment-cost productiochrtelogy (e.g., Epstein 1981,
Lasserre and Ouellette 1999; Ouellette and Vige&ftl). Recently, other primal
representations of the adjustment-cost productemhriology have emerged in the
literature allowing for the possibility of multipleutputs. Silva and Stefanou (2003)
show that an adjustment-cost production technolzagy be represented by a family of
input requirement sets satisfying some regularipditions. A hyperbolic input
distance function is defined in Silva and Stefarf@007) to represent a production
technology with adjustment costs and develop dynameasures of production
efficiency. In this paper, a directional input tdisce function is defined and
characterized to represent an adjustment-cost ptiotutechnology. The adjustment-
cost (dynamic) directional input distance functiganeralizes the directional input
distance function developed by Chambers, Chund-anel (1996) in the static context.

Static duality is well established in the produettbeory: duality between production
sets and optimal value functions (e.g., Shephard0191cFadden 1978; Fare and
Primont 1995); duality between Shephard’'s distafwactions and optimal value
functions (e.g., Shephard 1970; Fare and PrimoA6)Xduality between directional
distance functions and optimal value functions ({@bars, Chung and Fare 1996, 1998;
Fare and Primont 2006). In contrast, intertemp(dghamic) duality has been focused
on the dual relation between the production fumcaad the optimal value function of
an intertemporal optimization problem (e.g., Epste981; Lasserre and Ouellette 1999;
Ouellette and Vigeant 2001), and duality between dptimal value function and the

instantaneous variable profit function (McLaren d@wboper 1980). In the context of



intertemporal cost minimization, this paper esti#s duality between the adjustment-
cost directional input distance function and therent value of the optimal value
function.

Dynamic efficiency measurement is developed, is fraper, from the adjustment-
cost directional input distance function and irgerporal duality. The dynamic
directional input distance function provides diéfiece measures of relative efficiency as
opposed to radial measures (e.g., Nemoto and Gifi8; Duellette and Yan 2008) or
hyperbolic measures as in Silva and Stefanou (2007)

This paper is structured as follows. In the neattion, a directional input
distance function is defined and characterizedhm ¢ontext of the adjustment-cost
model of the firm. The dynamics are introduced ke tproduction technology
specification as an adjustment cost in the forrthefproperties of the directional input
distance function with respect to the dynamic fex{@r the change in the quasi-fixed
factors). Section 3 establishes, in the contextteitemporal cost minimization, duality
between the adjustment-cost directional input disgafunction and the current value of
the optimal value function. Dynamic input-basedogfhcy measurement is discussed
in section 4. Dynamic input inefficiency measuaes generated from the adjustment-
cost directional input distance function and dyab¢tween this function and the current
value of the optimal value function. The empiricaplementation of these inefficiency
measures is illustrated using DEA techniques antesof these measures are applied to
panel data of Dutch glasshouse horticulture firmsthe period 1997-1999. The
discussion of the DEA models is presented in sediathe description of the data and
the discussion of the empirical results are preskm section 6. The final section

concludes.



Dynamic Directional Input Distance Function
The adjustment-cost production technology at tingerepresented by a family of input

requirement sets. The input requirement set is)ddfas (Silva and Stefanou 2003)
D VyOK®) ={x®),1 @) : (x), () can producey(t) givenK (1)},
where y(t) 0O is the vector of outputsx(t) DO is the vector of variable inputs,

K(t)ODOF, is the capital stock vector ardt) JOF is the vector of gross investments

(dynamic factors).

Including gross investment in the definition Bfy(t)|K(t)) implies maximum
output levels not only depend on variable and gfiasd factors but also on the
magnitude of the dynamic factors (change in thesllexf the quasi-fixed factors).
Internal adjustment costs are incorporated(y(t)[K(t)) in the form of the properties of
these sets with respect to the change in the duasi-factors (see Silva and Stefanou

2003).

Properties of V/
V.1 V(y(h)IK(t)) is a closed and nonempty set.

V.2 V(y(H)IK(t)) has a lower bound.

V.3 If (x(1), [(1)) OV (y(t) | K()) andx(t)" = x € ), then(x(t)', 1 (1)) OV (yt) | K {))
VA IE (x(), 1)) OV (yt) [ K®) and ()" < | €) then(x(t), 1 ({t)) OV (y(t)|K ))
V.5 V(y(H)[K(t)) is a strictly convex set.

V.6 K(t)' 2 K(t) = V(yt) K1) OV (yt)| K(t)).

V.7 y) 2y = V(O K®D) OV(ye) [K®).



Some of these properties are the usual propettiepuot requirement sets in the
static model of the firm: V.1-V.3 and V.7. The namginess assumption of property
V.1 implies feasibility and the closedness assuomptif V.1 precludes that technology
discontinuously changes from being able to produte not being able to produge
Property V.3 establishes positive monotonicity\bfn x implying additional units of
any variable input increasgs Property V.7 asserts that outputs can be dispo$e
freely if necessary.

Properties V.4-V.6 are crucial to define the inpequirement set in the context
of the adjustment-cost model of the firm (Silva &tdfanou 2003). Property V.4 means
thatV is negative monotonic ih implying there is a positive cost when investmiant
quasi-fixed factors takes place. This property e the presence of internal
adjustment costs associated with gross investrieaperty V.6 establishes that output
levels are increasing in the stock of capital. Brops V.4 and V.6 together state that
current changes in the dynamic factors decreaserdulevels of outputs but increase
output levels in the future by increasing the fatatocks of capital. Strict convexity in
(x,1) (property V.5) leads to sluggish adjustment ie tuasi-fixed factors since it
implies an increasing marginal cost of adjustmeis. shown below, strict convexity of
V in (xl1), givenK andy, implies strict concavity of the dynamic directednnput

distance function with respect tq ().

Definition 1 The dynamic  directional input  distance  function
D:OM x0OF xO¥xO xON xOF, . O is defined as follows:

(x(t) - B9, 1 (t)+ Bg,) OV (y(t)| K(t)) for somes and — o otherwise.



(9,,9,)00%, xOF, is a nonzero vector determining the directionvitich D
is defined. This function measures the distance(x@), I(t)) to the boundary of
V(y(t)|K(t)) in a predefined directiong,,g,) # 0. . Given thatfy, is subtracted
from x(t) and By, is added tol(t), this function is defined by simultaneously

contracting variable inputs and expanding dynaraatdrs. Properties V.1 and V.2 of
V(y(t)|K(t)) assure the maximization operation in definitiois well-defined.
Figure 1 illustrates the dynamic directional indigtance function assuming one

variable input and one dynamic factor. The inputtee (x(t),I(t)) is projected onto the
isoquant of V(y(t)K(t)) at a point (x(t)-D(.)g,,!(t)+D()g,) IV (Y®|K(),
(9,,9,) #0,.,r - Figure 1 shows three possible projections ofitipeit vector (t),I(t))

associated with three directiong’, g* and g°.

V(y(t) | K(t))

(1(t),x(t)) /
> (1(t),x' (1)
(1°(2),x°(1))

(1%(t),x*(t)

1

g

»
>

g2 A 4

Figure 1. The dynamic input distance function



Using definition 1, the following relationship cae established
(2) D(y(), K (), x(t), 1 (t);9,,9,) 20 = (x(t),1 (1)) OV (yt) | K (1)),
(9,,9,)00%, xOF,. This relationship means that the dynamic diceal input

distance function represents fully the input reguoient set. Thus, this function is an

alternative primal representation of the adjustroast production technology.

Lemma 1. D satisfies the following properties:

D.1 If Vis strictly convex,D is strictly concave with respect to, ) givenK andy.
D.2D(y,K,x-ag,,l +ag,;9,.9,) =D(y.K.x,1;9,.,9,)-a, aO0O.

D.31fV.7, theny 2y = D(y,K,x,1;9,,9,) <D(y,K,x,1;9,.9,).

D.4 If V.3, then X' 2 x= D(y,K,x,1;9,,9,) > D(y,K,x,1;9,.,9,) .

D.51f V.4, thenl'< | = D(y,K,x,1;9,,9,) > D(y,K,x,1;9,.9,).

D.6 If V.6, thenK' =K = D(y,K',x,1;9,,9,) > D(y,K.x,1;0,,9,).
D.7 ﬁ(y,K,x,I;agX,agl)=%I5(y,K,x,l;gx,g|),a> 0.

D.8 D is continuous with respect t®,[), givenK andy.

The proof of Lemma 1 is presented in the Appendproperties D.2-D.4, D.7
and D.8 are analogous to the properties of thetiimal input distance function defined
in the context of the static theory of productised Chambers, Chung and Fare 1996).
Property D.2 is the translation property; propéty states that the dynamic directional

input distance function is homogeneous of degré¢ i¢ (9,,9,). Both of these

properties result from definition 1. Property D(B.4) states that the dynamic

directional input function is decreasing (increg3imy (X).



Properties D.5 and D.6 establish that the dynanmectional input distance
function is, respectively, decreasing linand increasing irK. These properties are
inherited from the properties V.4 and V.6 of thpuhrequirement set. Thus, properties
D.5 and D.6 together imply that current changebhédynamic factors decrease current
levels of outputs but increase output levels infthare by increasing the future stocks
of capital. Property D.1 results from property \Wob the input requirement set and
implies increasing marginal cost of adjustment iegdo sluggish adjustment in the
guasi-fixed factors.

Less restrictive properties ¥fcan be assumed, resulting in less strict progertie
of the adjustment-cost directional input distangaction. These properties were chosen

to facilitate the characterization of duality irethext section.

The Intertemporal Problem and Duality

Dynamic duality is a subject matter dating backh® papers of Cooper and McLaren
(1980), McLaren and Cooper (1980), and Epstein 1198ooper and McLaren (1980)

develop intertemporal duality in the context of tbensumer theory. McLaren and
Cooper (1980) and Epstein (1981) focus on intertgadpduality in the context of the

adjustment-cost model of the firm. McLaren and Goo@d980) establish intertemporal
duality between the instantaneous variable prafiiction and the total profit function;

Epstein (1981) establishes intertemporal dualitiwben the total profit function and

the production function. For a detailed analysishef dynamic duality results developed

by Epstein (1981), see Caputo (2005), chapter R0537-558.

! Property V.5 can be defined in a less restrictiwg, imposing convexity rather than strict convexif the input

requirement set. In this casé is concave rather than strictly concave. Interterapduality, presented in the next
section, can be established assuming a concavetidiral distance functionHowever, strict concavity of

D eliminates the problem of multiple optimal soluonhen establishing intertemporal duality.



More recently, Lasserre and Ouellette (1999) pre@oduality theory in discrete
time for an expected cost-minimizing firm in thepence of adjustment costs where the
production technology is represented by a prodaoctimction. Ouellette and Vigeant
(2001) generalize the static duality between a ftogttion and a production function of

a regulated firm to a dynamic context.

Our main goal in this section is to establish dyatietweenD and the current

value of the optimal value function of the interfgmal cost minimization problem. At
any base periodD[O,+oo), the firm is presumed to minimize the discountieavfof

costs over time as follows

+o0

W(y,K,,w,c,r,9d) = (xrglilr()» je”(s‘”[w' X(s) +C K (s)ds
t

(3) st.
K(s) = I(s) - K (s), K(t) =K,
(X(), 1(9)) OV (¥(s) | K(9)), sOt,+w),

where yO O, is the output vector in the base periddl, 10°F, is the initial capital
stock vector,wOO!, is the vector of rental prices of the variable unhpector
xs)00OY, cO0Of, is the vector of rental prices of the capital ktogector

K(s)OOF, . The vectorsv andc represent current market prices (i.e.s att) that the

firm expects to persist indefinitely. The vectpfl 0", is the output vector in the base

period that the firm expects to produce over tifikis is the static price and output
expectations hypothesis. The firm revises its paicd output expectations as well as its
production plans as the base period changes.

The discount rate is > 0 and the) is a diagonaF x F matrix of depreciation

ratesd, > Q f =1,...F. The firm is assumed to have the same discotetanad the

same depreciation matrix in all base periods toaliat future costs and depreciate the
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capital stocks. Given this assumptionandé can be suppressed as arguments of the
optimal value functioW.
Given (2), the intertemporal cost minimization desb in (3) can be expressed

as

W(y. K, w,c)= min [e”[w xs)+cK(s)ks

4) st.
K(s) = I(s) - K (s), K(t) =K,
D(¥(8),K(9), X9), 1(9);9,,9,) 2 0, sOt,+o).

In order to establish duality betwedb and W, additional assumptions are
defined. These assumptions are analogous to thanpsisns postulated in Epstein
(1981) and allow us to use differential calculusstablish duality betweeB andW.
Besides properties D.1-D.8D is assumed to satisfy the following property: D.9
DOC®andD,0C®, 1 =y,K,x,|. Inaddition, the following conditions are assame
to hold:

(a.1) For eachly,K, w ¢ ,)there exists a unique solution for problem (4)hie

sense of convergent integrals; the policy functiors(y,K,,w,c) and

1" (y,K,,w,c) are C® and the current value shadow price function

g (y,K,,w,c) is C?.

(a.2) For each(y,K,,x° 1° )there exists(y,K,,w’,c® )such that(x’,1° )is
optimal for problem in (4) as =t, given the vectory and K, and the rental

prices vectorsv andc.

Assumption D.9 guarantees smoothness conditionsseacy to use differential

calculus to establish duality betwedh and W. Assumption (a.1) establishes the

11



existence of a unique and differentiable optimdlison to problem (4). Given problem

(4), the only pointgy,K,,x°,1° Yhat matter are the ones satisfying condition)(a.2

Given properties D.1-D.9 oD and assumptions (a.1) and (a.2), the current
value of the optimal value functiokV associated with problem in (4) obeys the
Hamilton-Jacobi-Bellman (H-J-B) equation (e.g., €ps(1981); Kamien and Schwartz

1991, section 21, pp. 259-263; Caputo 2005, chd®tepp. 511-532)

5) r'W(y,K,w,c) = rrxnln {vv’x+c’K +W, (y,K,w,c)(I —=K):D(y,K,x 1;9,,9,) 20}.

The H-J-B equation is valid for any base penipdD[O,+oo). K is any possible capital
vector in the base period aMl, (y,K,w,c)" is the vector of the current shadow (or
marginal) value of capital. By definition, the cemt shadow value of the quasi-fixed
factorf, W, , measures the impact on the optimal current viainetion due to a small
change in the initial capital stodk, . Therefore, the current shadow value of capital is

an endogenous price influenced by the rental pijegs, the initial capital stocks and
the vector of the production targets.
The H-J-B equation in (5) can be converted to thiéowing unconstrained

problem as

(6) TW(y,K,w,) = min {wx+CK +W, (y,K,w,c)(I =&)+AD(y,K x,1:9,.9, ),

where A =W, (.)g, —w'g, . Proof of equation (6) is presented in the Apgpendis the

firm’s current valuation of the directional vectaich is equal to the current shadow

value of the dynamic factor direction minus therent market value of the variable

input direction. Note that, along the optimal paib(.) = 0.

2 All vectors are column vectors and the derivatife scalar-valued function with respect to a calum
vector is a row vector.

12



The H-J-B equation in (6) states that the totalaspymity cost of the optimal
input vector in the base periadrW, is equal to the current total cost plus the curre

shadow value of the optimal net investments. Ong¢hef optimal conditions for an

interior solution in problem (6) is the following, :—)If)lf, f =1...,F. These

conditions show that the adjustment costs assaciatth changes in the quasi-fixed
factors are the source of the time interdependendbe firm’s production decisions.
Note that those conditions establish that the otisbadow value of a unit of the quasi-
fixed factorf is equal to its current marginal cost. As shownthie Appendix, the
current shadow value of a unit of the quasi-fixackérf equals the discounted stream of

the net marginal benefits it generates from the Ipgsiod to infinity
(7) WKf () = J‘t+°° e—r(S—t) (_ e—Jf (S—I)Cf _ e—5f (S—t)/‘lef ())dS

Given (7), those optimality conditions imply thdtet optimal investment decisions
result from a balance between the current margiosti and the discounted stream of the
future net marginal benefits generated by an amthatiunit of each quasi-fixed factor.

The optimal values ofx( I) for problem (6), given(y,K w ¢ ,) are equal to
optimal values of the control variables in the itémporal cost minimization problem
in (4) whens =t (assumption (a.2)). By assumptions (a.1) and ,(d@) each

(y,K,w,c), the optimal values ofx( 1) in problem (6) are given by the values of the

policy functions x" (y,K w¢)e 17 (y,K w,c), which are the optimal values of the
control variables in the intertemporal cost miniatian problem in (4) in any base
periodt, tD[O,+oo), given that the capital stock vector in the basgogl isK.

The H-J-B equation in (6) is important to establishality betweenD andW

since the problem in (6) is a static optimizationkgem relating these functions (e.g.,

Epstein 1981). Consequently, the static dualitpthean be applied. Theorems 1 and 2

13



below establish intertemporal (dynamic) dualityvietn D andW. The proofs of these

theorems are presented in the Appendix.

Theorem 1: Let D satisfy properties D.1-D.9 and assume conditions) (and (a.2).

DefineW as in problem (4). TheNY satisfies the following properties

W.1Wis a real-valued functio/(.) 1C® andW, (.)OC®.

W.2 Wis increasing ity.

W.3 W is decreasing iK;.

W.4 (@)W, () (1" =K) =rW, <0, (b) Wy, ()™ = K) = (r + OW, (.)+c>0",
@©Wio () (17 =) =W, () =K, (d) Wi, () (17 =K) =W, () -x".

W.5 Wis homogeneous of degree onevinc).

W.6 (a)Wis increasing inwv; (b) Wis increasing irt.

W.7 Wis concave inw, ¢), givenK andy.

W.8 For anyy,K w ¢ ) define the following problem

F(y K,X |'g g ):min{W,X+C,K +WK ()(I _%)_rW(y,K,W,C)}

wg, ~W (g,

wg, -W,g, 20. (a) For(y,K,w°,c’), the minimum value in the previous problem

occurs at (w,c) = (w°,c® )if (x,1) =(x (y,K,w°,c°), 1" (y,K,w°,c?). (b) F is non-

negative and strictly concave ix (), giveny andK.

Theorem 1 establishes thaV is obtained from D. The meaning and
implications of the properties of the optimal vafuaection W can be deduced from the
proof of theorem 1. Before presenting theorem Besof those properties are analyzed.

Property W.3 implies thatV, <0, f =1..,F, and is dual to property D.5, which, in

14



turn, implies thatD, <O, f =1...,F. Properties W.4(a) and W.4(b) imply restrictions
on the optimal value function. In particular, prage/N.4(b) is dual to the property D.6,
which implies thatD, >0, f =1...,F . An intertemporal version of the Shephard’s
lemma can be constructed from properties W.4(c)vant{d). Property W.8 establishes
that F(y,K,x,1;0,,0/)= D(y, K.,x,1;0,,9,) and this relation is important to

construct theorem 2.

Theorem 2: Let W satisfy properties W.1-W.8. Define

5(y, K,x,I; 9,,9, ) = min{WX+ cK +WK,(')(I - d<) - rW(y, K,w, C)}’
w,e wag, -W, ()g,

wg, -W,.g, 20, (9,,9,)00% x0°%,,(9,.,9,) #0,.-. Then, over its domain of

definition, D satisfies properties D.1-D.9.

Theorem 2 establishes that it is possible to rac@edrom the current value of
the optimal value function. The objective functiom Theorem 2 is equal to the
difference between the total opportunity cost @& ifput vectorX,1) and the minimum
total opportunity cost, normalized by the firm”duation of the directional vector.

Theorems 1 and 2 prove the existence of the fofigwduality between the
dynamic directional input distance function and theerent value of the optimal value
function:
r'W(y,K,w,c) = ngyiln{w’x+ K +W, (v, K, w,c)(l - XK)

(8a) )
+ (W (v, K, w,0)g, ~Wg,)B(y, K, 1:9,,9,)},

(8b) D(y,K,xl;g,,9,) = rElVicn{V\/x+c'K +W, ()(I = &K) —rw(y, K,W,C)},

wg, W (g,

15



wg, -W,g, 20.

The optimal value function for the minimization ptem in (8a), defined in the
input space, isW, with policy functions x (y,K, w¢ ) and I (y,K, wg). The
dynamic directional input distance function is tbptimal value function for the
minimization problem in (8b), defined in the renpaices space, with optimal functions

w (y,K,x,1) and ¢’ (y,K x | ). Note thatx=x"(y,K w¢)and | =1 (y,K wg) if

and only ifw' (y,K,x,1)=w andc” (y,K,x,1)=c.

Dynamic Efficiency M easur ement

From (8a) and (8b), we may write

9) rW(y,K,w,c) SwWx+cK+W, (I —K)+W,g, ~wg,)D(y.K,x1;9,.9,).
This inequality can be rearranged as

WX+ CK+W, () —K)-rW(y,K,w,c)
wg, ~W (g,

(10) OE= >D(y,K,x1;9,.9,),

where the left-hand side is the dynamic cost ingfficy measureJE). This measure is
the normalized deviation between the total shadost of the actual choices and the
minimum total shadow cost. The normalization is fih@’s valuation or shadow value
of the direction vector, making the dynamic co&fficiency a unit-free measure. The
right-hand side is the dynamic directional inpwtaince function measure of technical
inefficiency of variable and dynamic factors.

Expression (10) can be modified by introducing@dtive inefficiency AE),
rendering it as the following equality,

wx+CK +W, ()(I —K)-rW(y,K,w,c)

(11) OE= :
w gx _WK ()gl

=D(y,K,x1;9,,9,) + AE,

16



with AE > 0. Note that the dynamic cost inefficiency meas(ard the dynamic

directional input distance function) depends on direction vector choseng,,d, .)
One possible choice i%9,,9,)= x( ,, )i.e., the direction vector is equal to the

observed variable input vector and the observedmiyn factor vector.
A directional distance function for dynamic factaran be derived as a special

case of the dynamic directional input distance fiamcin definition 1:
(12) B, (v, K x,10y,9,) =max, :(x,1 +£,9,) OV (Y| K)}
with g, =0, and D, (y,K,x,1;0,,9,)=0. Properties ofD, are derived from the

properties ofD (e.g., strict concavity i, increasing inx). The directional distance
function in (12) provides a measure of technicaffiniency of the dynamic factors of
production.

Using (11) and (12), the shadow cost inefficien¢ydgnamic factors can be

expressed as

(13) o, =W OU=1) _ 5 (K x10,.0,) + AE,,

“We ()9,
whereAE; > 0 is the allocative inefficiency measure of dynarfactors. The shadow
cost inefficiency measure of dynamic factors isdtiterence between the shadow value
of actual gross investments and the shadow valuepbimal gross investments,

normalized by the shadow value of the directionmeg;, .

Equation in (13) can be further decomposed in dtlewing way:

W, ()0 -1 EW, O —17) &
= = = OEI ,
_WK (-)Q, fz=1 _WK (-)g| fzzl '

(14) O,

whereOE, is the shadow cost inefficiency measure of fhelynamic factor. This

decomposition allows identifying the dynamic fasttiat are over-investe®g, <0)
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or under-invested QE, >0). The shadow cost inefficiency measures of the
dynamic factors can be all zero or all negativeowklver, OE, cannot be all positive

due to property V.4 oV¥.
The directional variable input distance function asparticular case of the

dynamic distance function presented in definiticandl is given by
(15) D, (¥, KX, 1:9,.0¢) = max{ B, :(x— B,9,, 1) OV (Y| K)},
with g, =0. and D, (y,K,x,1;g,,0.)20. The properties oD, are inherited from

the properties of the dynamic directional inputtati€e function in the definition 1.
Those properties are similar to the propertieshefdirectional input distance function

developed by Chambers, Chung and Fare (1996) imgusivo additional properties:

f)xis decreasing ihand increasing iK.

Duality between f)x and the variable cost functioB(y,K,I,w dan also be

established. Intuitively, this dual relation candxpressed as the following optimization

problems

(16a) C(y,K,l,w) = mxin{vv’x— D, (v.K,x,I;9,.0: )W’gx},

(16b) @(y,K,x,l;gx,oF):mf{wx—cgyx,l,w)}
w ng

wg, #0.

A variable cost inefficiency measure can be geedritom (16a) and (16b) as

(17) OEX — WX_C(,y|K1||W) = Ijx(y,K,X, I;gX10F)+AEX,
wag,

where f)x(y, K,x,1;9,.,0:) is the technical inefficiency measure of variablguts and

AE, > 0 is the allocative inefficiency measure. Thetansfficiency of variable inputs
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is the normalized difference between actual to@liable costs and minimum total

variable costs. The normalization is the marketiealf the direction vectog, .

The cost inefficiency of variable inputs in (17ndae decomposed as follows:

N
W (X X))
WX—WX _ =
(18) OE, =—— =t =Y OE,,
ng ng n=1

where C(y,K,l,w) =wx and OE, is the cost inefficiency measure of thi variable

input. The decomposition in (18) allows identifyirvariable inputs that are either

overused OE, > Qor underused@E, < Y The cost inefficiency measures of the
inputs can be all zero or all positive. Howev@t, cannot be all negative due to

property V.3 oiV.

Empirical Models
The empirical implementation of the inefficiency asares is illustrated using DEA
models. Dynamic or intertemporal versions of DEAdaeen developed recently (e.g.,
Fare and Grosskopf 1996; Nemoto and Goto 1999, ;280@a and Stefanou 2003,
2007; Ouellette and Yan 2008). The dynamic DEA nedermulated in Fare and
Grosskopf (1996) are built on the notions of intedmate outputs and storable inputs.
The time interdependence of the production decssi@sult from the fact that some
outputs from an earlier period are used as inputBe next period and some inputs are
storable for one period reducing the input usdnis period and increase the input use in
the next one. Nemoto and Goto (1999, 2003), Silva &tefanou (2003, 2007) and
Ouellette and Yan (2008) develop dynamic DEA modelde light of the adjustment-
cost theory of the firm.

The dynamic DEA models in Nemoto and Goto (19993@re constructed on

the basis of a production possibility set definederms of variable inputs, quasi-fixed
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factors and outputs, where stocks of the quasdffaetors at the end of each period are
treated as outputs while the stocks of these fadbithe beginning of each period as
treated as inputs. The dynamic factors (i.e., thenge in the level of the quasi-fixed
factors) are not explicitty modelled in the firmjsroduction technology. In fact,
Ouellette and Yan (2008), pp. 244-245, discuss donmiations of Nemoto and Goto’s
DEA models. In the dynamic DEA models constructedSilva and Stefanou (2003,
2007) and Ouellette and Yan (2008), the dynamitofacare explicitly incorporated in
the firm’s production technology. Silva and Stefar(@007) consider that investment
decisions are irreversible and develop hyperbojicathic efficiency measures in the
long- and short-run; Ouellette and Yan (2008) adeisthe possibility of investment and
disinvestment and focus on the efficiency of vdeabputs.
The dynamic DEA models used in this paper are amiid the DEA models

constructed in Silva and Stefanou (2003, 2007). siClem a data series
{(yj X KW ) L= 1,...,J} representing the observed behavior of each ffiain
each timet and including information ow andc for each observatiopat each time.

The dynamic directional input distance function swga of technical inefficiency for all

factors of production can be generated for eackrobsioni as follows:

Dy, K", X, 1';9,,9,) =maxss
N%

st
J
Y S D V'YL m=1..M;
j=1
(19) J

dVIxisx -B'g, ,n=1..N;
=1
Iy +8'g, -0, K<) y (1l -6,K]), f =1..F;

j=1

y'20 j=1..J.

20



wherey is the (x1) intensity vector,) is the total number of firms in the sample. The

direction vector adopted in the empirical applieatis (g,,9,) =(x 1), i.e. the actual

quantities of variable inputs and investments. Nbt the output constraints and the
variable inputs constraints in (19) reflect, respety, properties V.7 and V.3 of the
adjustment-cost input requirement set. Propertigsand V.6 are reflected in the net
investment constraints. Due to the “curse of dinmradity” underlying the DEA, the
investment constraints are defined in terms of imeestment rather than gross
investment The variable input constraints and the investneenstraints in (19) imply
the adjustment-cost input requirement set is convex

Note that the inefficiency measures for all factorgroduction in (11) depend
on observed variablegy',K',x',I',w,c" &nd on the underlying shadow value of

capital. The shadow value of capital is an endogenvariable, thus it must be
“estimated” simultaneously with the current valdehe optimal value function.
The flow version of the current value of the optimalue function for each
observation can be generated as
rW(yi,Ki,vv",ci):rxr]i?[wi’x+ci’Ki W (1 -
st

J
Zyi yl>2y | m=1..M;

j=1

J
X = Ix), n=1..,N;
(20) LY

\VARN\V/
e o
-~ 35

1

% In the dynamic DEA model developed by Silva andf&@tou (2007), the investment constraints are
defined in terms of gross investment.
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where W, =W, (y',K',w,c' ) is the vector of the shadow value of capital for
observation, i=1,...,J. The Kuhn-Tucker conditions of (20) are
W - X =0,x, 20,x (W, —)=0, n=1,...,N;
-3y S-S -8,k ]) 20
m=1 n=1 f=1
y" =20 y"[]=0 j=1...3;

J fx . . J fx . .
(21) DV Y20, 120, xSy YL - yn) =0 m=1.M;

j=1 j=1

J J
X, =YXz 0, g 20, X6 =Yy x)=0,n=1...N;

j=1 j=1
W, +4; 20, 1720, 1T (W, +4;)=0, f =1...F;

J

Syl -o,K) -, -0, K20, 4y 20, wi[.]=0, f =1...F;

j=1
where the dual variableg’ and y are the current value of the Lagrangian multiglier
associated with the constraint on the outpuand the variable input, respectively.
The dual variabley; is the current value of the Lagrangian multiphssociated with
the constraint on net investment of the quasi-fileedorf. For an interior solution, the

negative value of the shadow value of cam{W}if is &qual tqu; , f =1,...,F. This dual

variable can be interpreted as the marginal cosdpfstment for the quasi-fixed factor
f.
The problem in (20) can be solved using the Lir@amplementarity Problem

(LCP) as in Silva and Stefanou (2007) by expressiegKuhn-Tucker conditions in

(21) in a LCP form, given thatVV}if =u;,f=1,...F. Alternatively, the flow version of

the current value of the optimal value function &arch observation can be generated

using the dual of problem (20):
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M ) F ) )
max {> ulyn + Y ciKi}
HinHn s H f=1

f m=1

St.
(22) :
MUy —w, <0, n=1..,N;

M ) F ) ' N ‘
YLy (1 =KD =Y ix) <0, j=1...,J.
m=1 f=1 n=1

The solution obtained by solving (20) or (22) pa®s the optimal variable input
and dynamic factor vectors, the flow version ofreat value of the optimal value
function and the value of the underlying shadowugal of the quasi-fixed factors.
Using these values, the dynamic cost inefficien@gasure in (11) can be generated.
Given the solution of problem (19) and the dynamwst inefficiency measure, the
allocative inefficiency measure of all factors ofoguction in (11) is calculated
residually.

The technical inefficiency measure for dynamic destin (13) can be generated
for each observation as follows:

Dy (y' KX, 110y, ) =max/,

St

(23) J

j=1

y'20 j=1..J.
The direction vector is defined &g,,9,) = (0, 1).

Given the technical inefficiency measure for thenaiyic factors in (23), the

shadow value of capital and the optimal level & ttynamic factors from solving (20)

23



or (22), the allocative inefficiency measure carchlkeulated residually using (13). The
shadow cost inefficiency of each dynamic factor barcomputed using (14).
The technical inefficiency measure of variable itspn (15) for observationis
generated as follows:
B.(y',K' X1 9,.0¢ ) =maxs,
st

J

y- sZy"yr{q, m=1...M;

j=1
(24) . | |
S yixi<x -9, n=1..N;

i=1

Iy =0 Ky <Dy (1] -0,K])z, f=1..F;

j=1

y'20 j=1..7,
The optimal level of dynamic factors for each olgagon is obtained from solving (20)
or (22). The direction vector adopted($,, 9,) = (% 0. ).

The minimum variable cost for each firm can be gatesl as
C(y',K', 1", w)=minw x
194
st
D Yiyizyn, m=1..M;
j=1

(25) .
X, 2 > yixl, n=1.N;
=

J . . . ke .
Y Y=o K21y oKy, f=1..F;
i=1
y'20, j=1..J
GivenC(.) in (25), the allocative inefficiency of variabinputs is determined residually

for each firm using (17). The cost inefficiencyea#ch variable input can be calculated

using (18).
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Empirical Results

In this section, the input-based dynamic efficiemegasures are illustrated on panel
data of Dutch glasshouse firms over the period 18899. Data on specialised
vegetables firms covering the period 1997-1999%émained from a stratified sample of
Dutch glasshouse firms keeping accounts on belidghieoLEI accounting system. The
data contain 265 observations on 103 firms, spdmel is unbalanced.

One output and six inputs (energy, materials,isesy structures, installations and
labour) are distinguished. Output mainly considtsegetables, potted plants, fruits and
flowers. Energy consists of gas, oil and eledtri@as well as heat deliveries by electricity
plants. Materials consist of seeds and plantintenads, pesticides, fertilisers and other
materials. Services are those provided by conivadters and from storage and delivery
of outputs.

Quasi-fixed inputs are structures (buildings, gfasises, land and paving) and
installations. Capital in structures and instadiasi is measured at constant 1991 prices and
is valued in replacement coStsLabour is a fixed input and is measured in qu@orrec-
ted man-years, including family as well as hirdablar. Labour is assumed to be a fixed
input because a large share of total labour caenefstamily labour. Flexibility of hired
labour is further restricted by the presence ofmagrent contracts and by the fact that
hiring additional labour involves search coststifar firm operator. The quality correction
of labour is performed by the LEI and is necessaggregate labour from able-bodied
adults with labour supplied by young people (eygung family members) or partly

disabled workers.

“ The deflators for structures and installationscaleulated from the data supplied by the LEI acting
system. Comparison of the balance value in yaad the balance value in ydét gives the yearly price
correction used by the LEI. This price correctisused to construct a price index for structuresaan
price index for installations. These price indiees used as deflators.
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Torngvist price indexes are calculated for outpatjable inputs and quasi-fixed
inputs with prices obtained from the LEI/CBS. Tiréce indexes vary over the years
but not over the firms, implying differences in tbemposition of inputs and output or
quality differences are reflected in the quant@pXx and Wohlgenant 1986). Implicit
quantity indexes are generated as the ratio ofeveduthe price index. A more detailed
description of the data can be found in Table 1.

Inefficiency scores are generated for each hotticelfirm in each year over the
1997-1999 period.Table 2 reports average values of technical, aflee and cost
inefficiency of variable and dynamic factors of guation for each year and for the
whole time period.

Table 2 shows that the average cost inefficienagr akie 1997-1999 period is
0.44 implying that substantial cost savings caolitained. Technical inefficiency is the
largest component of cost inefficiency for eachryaad for the whole time period,
ranging between 0.39 (1997) and 0.26 (1999). Mezage allocative inefficiency of
0.10 suggests that Dutch vegetables firms can eedosts through a better mix of
variable and dynamic factors in the light of préiwgi prices.

Table 3 presents cost inefficiency for each vagabput using (18). The results
in Table 3 suggest there is, on average, overusal ofariable inputs in the whole
period 1997-1999. Overuse for energy and mateiglparticularly high as cost
inefficiency for energy and materials is, on avera®.32 and 0.26, respectively. Cost
inefficiency is lowest for services; for 1999 thesea small underuse rather than overuse
of this variable input. The relatively large castfficiency for energy may be due to the
fact that firms use a large variety of heating textbgies. A group of firms uses more

advanced and efficient technologies such as corgems, heat storage and heat

® Due to space limitations, inefficiency levels a reported for each firm. The inefficiency scobgs
firm are available from the authors upon request.
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delivery by electricity plants, whereas a majowntyfirms still uses traditional heating
technologies based on a combustion heater (Oudgrikaand Silva 2003).

Table 4 presents cost inefficiency for individughdmic factors of production
for individual years and for the whole time perib@7-1999. The results suggest that
firms neither over-invest nor under-invest in stanes and installations in 1997 and
1998. For the year 1999, the values of -0.40 ar@P-ihdicate a large overinvestment in
structures and a small overinvestment in instalteti Inspection of the data reveals that
average investments in structures and installatwasndeed much higher in 1999 than
in the two preceding yeafsTherefore, firms have substantially increased rthei
investment level in 1999 compared to the previoeary. However, they have been

over-investing in both structures and installations

Concluding Remarks

In this paper, a dynamic directional input distahgegction is defined and characterized
in the context of the adjustment-cost model of fim and shown to be a complete
function representation of the adjustment-cost pctdn technology. Intertemporal

duality is established between the dynamic direetionput distance function and the
current value of the optimal value function of timtertemporal cost minimization

problem.

The dynamic directional input distance function asrepresentation of the
adjustment-cost technology that provides dynamifemince measures of relative
efficiency, as opposed to ratio measures (e.g., dlerand Goto 2003) or hyperbolic
measures as in Silva and Stefanou (2007). A metbodheasuring dynamic input-

based efficiency is developed by exploiting thent@mporal duality. Furthermore, this

® Investments in structures in 1997, 1998 and 19@938, 39 and 66 (1000 guilders), respectively.
Investments in installations in these years are838&nd 57 (1000 guilders).
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paper shows that the dynamic inefficiency measaasdy disentangle the contribution
of individual variable and dynamic factors of protian to inefficiency.

The dynamic input inefficiency measures are apptieeganel data of Dutch
glasshouse firms over the period 1997-1999. Thalt® suggest that these firms can
achieve substantial cost savings, particularly maproving technical efficiency of the
variable and dynamic factors of production. Anelys the contribution of individual
variable factors to inefficiency shows that eneand material are among the least
efficiently employed. Further analysis of the dymarfactors reveals that firms over-
invested in structures in the year 1999.

There are a number of directions future reseamih move. In a dynamic
production context, the impact of technological gygess and uncertainty cannot be
neglected. Specifically, the effects of (price amaduction) uncertainty and risk
preferences on economic decisions are likely teitpaificant with consequences on the

level of efficiency achieved by decision-makers.
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Table 1: Variables and Descriptive Statistics

Variable Dimension Mean Standard Deviation
Quantities

Output 1000 Guilders 1124.9( 984.60
Energy 1000 Guilders 132.7¢ 121.99
Materials 1000 Guilders 124.87 99.91
Services 1000 Guilders 85.59 73.56
Structures 1000 Guilders 833 3¢ 697.18
Installations 1000 Guilders 299 3¢ 243.31
Labor Man years 6.62 5.17
Investments Structures 1000 Guilders 46.70 156.43
Investments Installations 1000 Guilders 41.34 128.90
Prices

Energy 1991=1 1.14 0.03
Materials 1991=1 1.05 0.02
Services 1991=1 0.94 0.02
Structures 1991=1 1.51 0.13
Installations 1991=1 1.08 0.03

Table 2: Technical, Allocative and Cost Ineffiadgrof All Factors of Production

Period TE AE OE
1997 0.39 0.09 0.48
1998 0.34 0.11 0.45
999 ] 026 ... 013 | 0.39
1997-1999 0.33 0.10 0.44
Table 3 Cost Inefficiency of Variable Factors ob&uction
Period Energy Materials Services
1997 0.33 0.26 0.07
1998 0.33 0.25 0.03
999 ] 031 .92 -0.02.
1997-1999 0.32 0.26 0.03
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Table 4 Cost Inefficiency of Dynamic Factors of éRrction

Period Structures Installations
1997 0.01 0.01
1998 -0.00 0.00
4999 040 -0.02
1997-1999 -0.12 -0.00
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Appendix

Proof of Lemmad.: The time index is omitted for the sake of a clear exposition.

D.1 Assume(x,1)OV(y|K )and (X, OV(y|K) and let X" =ax+ (l-a)x and
["=al +(1-a)l’, aD(O,l). By the strict convexity o¥/(y|K), (x",1")OintV (y|K).
By the definition 1,

x=DB(y,K.,x,1:0,,8,)0,.1 +D(y.K.x1:9,.9,)9, | OV (Y| K),

X =By, K,X,1":0,,0,)9,.1"+ D(y,K,x,19,,9,)0, | OV (¥ K),

X" =B(y,K,X",1"9,,9,)9,.1" + B(y,K,x',1":9,,9,)9, [0V (Y| K).

Let D =aD(y,K,x,1;9,,9,)+@-a)D(y,K,x,1;g,,9,). By the strict convexity of
V(K), (X' -D g,,1"+D g,)0intV(y|K). By the definition 1, this means that
D(y.K.x",19,,9,)>D =aD(y,K,x 1;g,.9,)+ A-a)D(y,K,X,1"9,.9,).

D.2 This property follows directly from the defiiih 1.

D.3 Sincey' 2 y, then, by property V.7V (y'|K) OV (y|K .)Thus, by the definition

1, it must be the case thBXy', K ,x,1;g,,9,) <D(y,K,x,1;9,.9,) .

D.4 Assume property V.3 holds and Kt x. By the definition ofD,
[x-D(y.K.x1:8,.9,)g,.1 +D(y.K.x,1:9,.9,)g, |V (Y K),

¥ = B(y. K. 1:9,,0,)9,.1 +D(y.K.X,1:9,.9,)g, [V (Y K)..
It must be the case that

X =D(y,K,X,1;0,,9,)9, S X = D(y,K,x,1:0,,9,)9,-
Then, D(y,K,X,1;9,,9,) > D(y,K,x 1:9,,9,) .

D.5 The proof is similar to the previous one.

D.6 The proof of this property is similar to thepf of property D.3.
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D.7 The proof follows directly from the definitidh

D.8 This property follows from property V.1 and V.2

Proof of Equatiorn(6):

The Lagrangian problem associated with the H-Jagqn in (5) is
rwW(y,K,w,c) =rW(y,K,w,c;0)

(A.1) =TP{WX+GK+MW(MKNm®U—dQ

+/1([3(y, K, X, I;gx,gl)—o)}.

Consider the following H-J-B equation

" "W (y, K, w,c;a) =min {wWx+c'K+W, (y,K,w,ca)(l -&K):

(A2) D(y,K,x1;9,,9,) 2 a},

where the Lagrangian problem associated with (5.2)

rw (y,K,w,c;a) = min {vv’x+ c'K +W, (y,K,w,c;a)(l — XK)

(A.3) X!

+/]([3(y, K.,x,1:0,,9) —a)}.

Applying the prototype envelope theorem to (A.3)lgs

, oW (y,K,w,c;a)

(A.4) P

=W, ()(1 = K) - A.

Given property D.2, the Lagrangian problem in (Ac8)h be rewritten as
"W (y, K, w,c;a) = min {wx+c'K +W, (y,K,w,c;a)(l —K)
(A.5) ! B,
+A(B(y.K,x-ag,,1 +ag,:g,.9,) - O}
or, equivalently

"W (y,K,w,c;@) = min {W(x-ag,)+cK +W, (y,K,w,c;a)(l +ag, —K)

(A.6) +A(B(y.K,x-ag,,! +ag,;9,.9,) -0}
+a(wg, -W, (v,K,w,ca)g,).
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Applying the prototype envelope theorem to (A.@lgs

; oW (y,K,w,c;a)

(A.7) o

=W, ()(I - &) +Wg, -W, (), .
From (A.4) and (A.7), one can establish that

(A.8) A=W, ()g, -~Wg,.

SincerW (y,K,w,c) =rW(y,K w ¢ ;0) then

W (y, K,w,c) = miln{V\/x+c'K +W, (v, K, w,c)(l =)

+(W, (y.K,w,0)g, —~wg,)D(y,K,x1;0,,9, )}-

Proof of equatior(7):

A procedure similar to the one employed by Kamiad &chwartz (1991), section 4,
pp. 136-41, in the context of intertemporal prafieximization, is used to prove
equation (7).

Consider the H-J-B equation in (6). Differentiatif®) with respect td; and using the

static envelop theorem yields
F —
(A.9) ZVVKhKf () (Ih _5hKh) _WKf () (r +5f )= —C4 _/]DKf ()
h=1
Totally differentiatingW, (y,K,w,c) yields
. F .
(A.10) VVKf ()= ZWKth (K,
h=1

assuming thaty =0,,, w=0,, and¢=0..
Substituting (A.10) in (A.9), yields

(ALl) W ()W, () +8,)=-c, - B, ().
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The differential equation in (A.11) can be usedstmw the essence of the current

shadow value of a unit of the quasi-fixed fadtoMultiply both sides of (A.11) by the

~(r+p )t

integrating factore , and integrate frorito +oo

(A.12) L °°e‘<”"f)5[vaf () =W, ()(r +0, )]ds: jt ”e“”"f)s(— ¢, —AD,, (.))ds.
Calculating the integral on the left hand-sideAnlQ), yields

(A.13) W, (Je 0 = L e“”‘“s(— c; —ADy, (.))ds.

The previous equation can be rewritten as follows

(A14) WKf () :jt e—r(S—t) (_ e—ﬁf (S—t)cf _ e_()—f (S—t)/“ij ()bs

Proof of property W.3 in theorem 1 shows thiat 0 andW, <0. By property D.6,

[3Kf >0. Equation (A.14) implies that the marginal valdeaounit of the quasi-fixed
factor f, at time t, is the discounted stream of the net marginal fitsne
(— eV, eV ID, (.)), it generates fromto infinity. The value of a marginal
unit of the quasi-fixed factof reflects its depreciation ra#® . At time s, s > t, the

contribution of a unit of the quasi-fixed factas only a fractione™”"° of its contribution

at timet.

Proof of Theorem:1

W.1 Given assumption (a.1)V is a real-valued function. By the dynamic envelop
theorem and the principle of optimality (e.g., CapR005, chapter nine, pp. 231-242),
W, (y,K,w,c) =8 (y,K,w,c). Given assumption (a.1y, (.)O0C® . Now, it is left to
show that the second-order partial derivatives Véfwith respect to yw,c) are

continuous. Applying the static envelope theorermprtiblem (6),
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E
r.WW,.I (y' K'W'C) = X; (y! K!W!C) +ZWKan (y; KIWIC)[I ; (y; K|W|C) _Jf Kf ],n =:L...,N,
f=1

F
"W, (v,K,w,c) =K +ZWK.cf (y,K,W,c)[I,*(y,K,W,c)—a‘IKI], f=1..F,
1=1

W, (y,K,w,c) =4 (.)Dy(.)+iw,<fym (y, K,W,c)[l “(y,K,w,c) -3, K, ] m=1...M.

Given property D.9 and assumption (a.1), the rigdme sides of the previous equations

are C® functions of y,w,c). Thus, the second-order partial derivatives\Véfwith
respect to output levels and pricegwc) are continuous functions, implying
W(y,K,w,c)d0C®@,

W.2 This property follows considering the intertesrgd problem in (3) and property
V.7.

W.3 Consider the H-J-B equation in (6). By the wyatiity conditions for an interior

solution
w,+AD, =0,n=1..,N, and W, +A'D, =0 f=1..F.
From properties D.4 and D.5 and these optimalityd@tions, it must be the case that
W, <0".
W.4 In the proof of property W.1, the following exjions were established
W, () =X +W,, ()1 =&K), "W, ()=K+W,_ () -XK),
and W, (.) = A'D, () +W,, () (I = &K).
The first two equations establish properties (@ @) in W.4. From the last equation, it

can be established property W.4 (a) using propewie3 and D.3.

Proceeding in a similar way, it can be established
(I’ +5)WK(')_C_WKK(')'(|* _d<) :A*[SK (y,K,x*,I*;gx,g,)

Using properties D.6 and W.3, property W.4 (b)stablished.
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W.5 Let the triplet(x(s), I(s),K $ )be optimal for v ¢ )and K(t) = K.

W(y,K,,w,c) = f e V[ wx(s) +c'K(s)|ds

< ]oe-f‘ﬁ) [wxe () +cKe(9is 0 (9),1°() OV((9): K°(9))
Also,
J'tw eV aw X(s) + ac’K (s)|dss Te”(s’t) [avv’x0 (s) +ac'K® (s)bs, Oa >0.

This is equivalent to state
W(y,K,,aw,ac) = J'tm e " [aw X(s) + ac'K (s)|ds = aW (y, K, w,C) .

W.6 (a) Letw' = w?® and let the triple{(x' (s),1' (s),K' g ))be optimal forw=w' and

K'(t)=K,,i=1,2.

W(y,K,, W' c) = J‘tw e '™ [Wl'Xl(S) + c'Kl(s)]ds

> Te"‘s‘” [Wz'Xl(S) +Cc'K l(s)]ds
t

> je‘r‘s‘t) [WZ'XZ(S) +c'K 2(s)]ds
t
=W(y,K,,w?,c)
The first equality results from the definition diet optimal value functiokV in problem

(4). The second inequality results from the faett tW" > w* and the optimal triplet is
interior; and the third inequality is a consequeateptimality.

(b) It can be proved following a similar procedasein (a).
W.7 Let (w,c'),i= 12 and (W*,c) = a(w,ct) + @-a)(W?,c?), a0[0]]. Let the

triplet (x'(s),1'(s),K’ (s)) be optimal for(w’,c’), j =12,a,andK’(t) =K., Oj .
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W(y,K,,w*,c%) = J':o e "M [w"'x" (s) + c"' K (s)}ds
= Te’r‘s’t) {a[wl' X7 (s) + cKe (s)} +(1- a)[w2' X7 (s) + c?Ke (s)}}ds

> a]2 e " [wl' x'(s) + 01' K 1(s)}ds+ a- a)]o e " [WZ' x%(s) + cZ' K2 (s)}ds

=aW(y,K,,w'c")+@L-a)W(y,K,,w?,c?)

W.8 Given assumption (a.2x’ = x (y,K,w®,c® and1°=1"(y,K,w?,c?) solve the
H-J-B problem in (4) when(w,c)=(w°,c® .) Then, the primal-dual problem
corresponding to problem (4) is as follows

0= rrv1vicn{vv'x° +CK +W, (y,K,w,c)(1° - XK)

(A.9) + W, (v, K,w,0)g, ~wg,)D(y.K,x’,1%0,,9,)}
-r'W(y,K,w,c).

The price vecto(w®,c® )is optimal for problem (A.9) sinca® = x (y,K,w’,c® and
1°=1"(y,K,w°,c®) . Since the dynamic directional distance funci®mndependent

of (w, ¢), (A.9) can be rewritten as

s .0 s, 0_ _
(A.10) I5(y,K,x°,|°;gX,g|):min{wx +CK+W, ()0~ = XK) rW(y,K,w,c)}

ng _WK ()gl
Given the arbitrariness of the choice of poifyt, K,w°,c® , problem in (A.10) is
equivalent to problem in W.8. Thu&(y,K,x,1;0,,0,) = f)i (v,K,x1;9,,9,). Strict

concavity and non-negativity follows directly froproperty D.1 and equation (2),

respectively.
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Proof of Theorem:2

By property W.8 in theorem 1F(y,K,x, 1;9,,9, i well-defined. SinceD (3 F(.),

then D is well-defined.

D.1 and D.8 From property W.8 in theorem 1 follavat D is strictly concave inx),
giveny andK. D.8 follows from property W.1.
D.2 and D.7 Both properties follow directly fronetdefinition ofF in W.8.

- Wiy () (H=K) —1W, ()
wg, ~Wc()g,

D.3 [3y': F, < 0", applying the static envelope theorem to

problem in W.8 and using properties W.2, W.3 and (4).

D.4 I3X’: F = W > 0", applying the static envelope theorem to problem

" ng _WK ()gl

in W.8 and using property W.3.

Wi ()
ng _WK ()gl

D.5 f)l’: F'= <07, applying the static envelope theorem to problem

in W.8 and using property W.3.

o~ CH W (1 =K) = (11 7 + W, ()

D.6 D, '=F, ,
ng _WK ()gl

> 0", applying the static envelope

theorem to problem in W.8 and using properties @ W.4(b).

D.9 Inspection of the properties D.3-DB, =F,, | =y,K,x,|, andF, (.)OC®.
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