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ABSTRACT 
 
This paper assesses the forecast performance of a set of VAR models under a growing 
number of restrictions. With a maximum forecast horizon of 12 years, we show that the 
farther the horizon is, the more structured and restricted VAR models have to be to produce 
accurate forecasts. Indeed, unrestricted VAR models, not subjected to integration or 
cointegration, are poor forecasters for both short and long run horizons. Differenced VAR 
models, subject to integration, are reliable predictors for one-step horizons but ineffectual for 
multi-step horizons. Cointegrated VAR models including appropriate structural breaks and 
exogenous variables, as well as being subjected to over-identifying theory consistent 
restrictions, are excellent forecasters for both short and long run horizons. Hence, to obtain 
precise forecasts from VAR models, proper specification and cointegration are crucial for 
whatever horizons are at stake, while integration is relevant only for short run horizons.    
 
 
Keywords: VAR demand systems; structural breaks, exogenous regressors, integration; 
cointegration; forecast accuracy. 
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1. INTRODUCING THE SUBJECT MATTER 

Accurate modelling and forecasting of tourism demand are invaluable for the decision-

making process of private and public entities regarding investment and planning in the 

tourism industry. Reliable forecasts also constitute a solid basis for the implementation of 

policies and business strategies in this area. Since forecast accuracy comparisons of 

alternative models allow for deciding which are best to supply that crucial information, 

assessing models’ forecasting performance is an important prior task in advising course of 

action to business agents. Thus, the rapid growth of devoted researchers in this area, and the 

proliferation of tourism forecasting surveys are not surprising. Indeed, from Archer (1976) to 

Song and Li (2008), an average of one every couple of years has been published. 

The history of economic forecasting with econometric models is regularly plagued by reports 

of their failure and under-performance when compared with univariate, no-change or other 

naïve prediction devices. Given that econometric models can incorporate dynamic causal 

information allegedly able to track the underlying data generating process, it would seem 

reasonable to expect smaller prediction errors from these specifications than from purely 

extrapolative devices. Yet, this has not been the case in a large amount of cases, many of 

which are reported in Mills (1999).1 

Early explanations for the poor forecasting performance of econometric models are mostly 

anchored in formal misspecifications such as spurious relationships interpreted as meaningful, 

dynamic processes modelled as static, use of inappropriate functional forms, and unsuitable 

lag lengths. The poor predictive ability of such models is summarised by Clements and 

Hendry (1998, 1999) as the forecasting failure of misspecified models, where non-stationary 

processes and structural breaks are not accounted for. 

In time, Granger (1981, 1986), Granger and Weiss (1983), Engle and Granger (1987), 

Johansen (1988, 1995 and 1996), Banerjee et al. (1993), Harris (1995) and others, established 

the basis for cointegration analysis, which led to the ascendancy of ‘equilibrium-correction’ 

                                                
1 For related studies in tourism economics see, for example, Witt and Witt (1992), Kulendran and King (1997), 

Kulendran and Witt (2001) and du Preez and Witt (2003), stating that univariate models outperform econometric 

models; Kim and Song (1998), Song et al. (2000) and Song et al. (2003), stating that econometric models 

outperform univariate models. For other studies on this subject see also Witt and Witt (1995), Song and Witt 

(2000), Witt et all. 2003) and Li et al. (2005). 
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models in econometric modelling. These systems, include “almost all regression equations 

and simultaneous systems, … vector autoregressions (VARs), dynamic stochastic general-

equilibrium models and many variance models such as GARCH” (Hendry 2005, p. 400). 

Accordingly, more recent research on tourism demand using this broad class of vector 

‘equilibrium-correction’ (VEC) models has been producing important advances in 

overcoming the above mentioned modelling faults and resulting forecast failure. For instance, 

Kulendran (1996), Song et al. (2000), and De Mello (2001) use autoregressive distributed lag 

equations, error-correction models and cointegration analysis; De Mello et al. (2002), De 

Mello and Fortuna (2005) and Li et al. (2006), use static and dynamic almost ideal demand 

systems; De Mello (2001), De Mello and Nell ( 2005), Song and Witt (2006) and Zhou et al. 

(2007) use reduced form and cointegrated VAR systems. 

Although some studies (e.g. Clements and Hendry, 1995; Pesaran et. al., 2000; De Mello and 

Nell, 2005) suggest that forecasts from cointegrated VEC models, should outperform simpler 

benchmark models, others (e.g. Clements and Hendry 1998, 1999; Makridakis and Hibon, 

2000; Fildes and Ord, 2002) report less favourable results for the cointegrated forms. 

Indeed, Hendry and Doornik (1997), Clements and Hendry (2003, 2005), Hendry and Mizon 

(2005) and Hendry (2000, 2004, 2005) find that parameter instability and structural breaks are 

among the key factors of forecast failure, and that the poor performance of VEC models is 

mainly due to their lack of robustness to ‘location shifts’. In particular, Hendry (2005) states 

that VEC models are useless if structural breaks occur, regardless of their excellence with 

stationary generating processes after differencing and cointegration. Moreover, an explanation 

for why naive models (even being such poor translators of the in-sample generating process), 

may outperform VEC models is offered: naïve devices forecast better than VEC systems 

when the former are adaptive to precisely those structural breaks that undermine the latter. 

To overcome these problems, one line of research consists in developing non-structural 

forecasting methods (e.g. over-differentiation; intercept shifts; forecast pooling) allegedly 

robust to parameter instability. Given that non-structural economic forecasting is mainly a-

theoretical, this line of research is not restrained by any theoretical assumptions. As a result, it 

is more likely to progress faster, supported by the increasingly sophistication of computers 

and simulation techniques. In contrast, structural econometric forecasting is based on explicit 
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theory and, therefore, “it rises and falls with new theories, typically with a lag” (Diebold and 

Rudebusch, 1999, p. 268). Its progress is generally slower and far more laborious. 

Even so, we believe that theory-based econometric models should be favoured by forecasters 

because they present two inseparable properties which are of particular value for practical 

business purposes. When well specified, these models can provide not only a precise 

description of the data generating process but also, and subsequently, accurate predictions for 

the values of the variable of interest. Thus, the building of econometric models, even for the 

sole purpose of forecasting, must not disregard the fundamental dimension of an appropriate 

formal specification. It is this dimension that allows econometric models to provide reliable 

information for both explaining the past and predicting the future. If the trade off for attaining 

more precise forecasts with econometric models is to strip them of their theory-based 

structure, rather use mere extrapolative devices, which are much simpler specifications 

besides not making any theory/economic sense as well.  

In this paper, we provide empirical evidence showing that it is possible to reconcile the ability 

to forecast well, with the mandatory theoretical structure of econometric specifications. For 

that purpose, using data from 1969 to 1993, we estimate alternative VAR specifications and 

obtain out-of-sample (1994-2005) forecasts of the UK tourism expenditure shares for France, 

Spain and Portugal. These specifications are ‘congruently’ modelled (Hendry, 2004), to 

include increasing number of tested theoretical restrictions and, therefore, growing levels of 

structural complexity. In time series contexts, meticulous modelling requires a detailed 

knowledge of the particular conditions surrounding the headway of the variable of interest. 

Because forecasting failure can also be attributed to ignored structural breaks, it cannot be 

stressed enough how important it is to correctly incorporate them in the models specification. 

Indeed, there is no statistical substitute for in-depth, detailed and scrupulous gathering of 

information about which, how, and for how long, events disrupt coefficients’ structural 

stability. This is time consuming and hard work, but once done, it usually compensates.   

This approach of ‘congruent modelling for forecasting’ using rigorous in-sample modelling 

(which can avoid distorted forecasts), generates econometric specifications capable of 

outperforming other forecasting devices less rigorously modelled. Indeed, after comparing the 

forecast performance of the alternative VAR specifications, we verify that the models subject 

to cointegration and including exogenous restrictions, structural breaks and over-identifying 

theoretical assumptions, outperform unrestricted reduced form VAR models both for short 
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and long run horizons. Additionally, we also confirm that the former outperform the 

unrestricted differenced VAR model (benchmark) for multi-step horizons, while being 

equally precise for one-step horizons. 

The account of these results unfolds in the following way: section 2 describes the 

specification of VAR models used in this forecast comparison exercise and present the results 

of the cointegration tests performed for some of them. Section 3, explains which models are 

assessed and why. Section 4 presents the forecasting results obtained. Section 5 concludes.  

 

2. DESCRIBING THE VAR MODELS2 

2.1. Defining the variables in the VAR systems  

As stated previously, the aim of this paper is to compare the predictive ability of VAR 

models, some of which are defined in De Mello and Nell (2005) while others are constructed 

here. The VAR models for the UK tourism demand are estimated for the period 1969-1993 

with the variables in vector [ ]EPFPSPPWSWFt =V , where WF, WS and WP 

represent the UK tourists expenditure shares for France, Spain and Portugal, respectively; PF, 

PS and PP stand for tourism effective prices for the same destinations and E is the UK real per 

capita tourism budget.3  

With data until 1997, De Mello and Nell (2005) estimate their models for 1969-1993 leaving 

the last 4 observations for forecasting purposes. Although the authors argue that some models 

perform better than others, they also recognise that the small number of out-of-sample 

forecasts prevents them from drawing more definite conclusions.  

In this paper, we gathered additional data up until 2005 and, with models estimated for 1969-

1993, obtain 12 out-of-sample forecasts for the years ahead. We believe that this extended 

sample of forecasts is sufficient to test the prediction accuracy of all the competing models 

and, therefore, draw unambiguous statements about both the role of cointegration and that of 

proper model specification in the precision of VAR forecasts.  

                                                
2 This section draws from sections 2 and 3 in De Mello and Nell (2005). 
3 The definitions and data sources of the variables are described in Appendix 1, following De Mello and Nell 

(2005) and De Mello et. al (2002). The extended data used here were obtained from the same sources. 
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To demonstrate that integration and cointegration play different and relevant roles in 

improving forecast accuracy and to show that well specified econometric models, under the 

right conditions, are hard to beat in a forecast performance contest, we obtain forecasts from 

simpler models (first differenced and reduced forms) and compare them with those including 

all proper structural features. To gather the forecasts, we start by estimating the most basic of 

VAR forms, the reduced form unrestricted VAR. Then, we add three exogenous dummy 

variables (D1, D2 and D3) representing observed structural breaks in the data. We carry on 

imposing exogeneity on the variable E, and finally we include both the appropriate exogenous 

restrictions and the dummy variables simultaneously.4  

The dummy variables are defined as follows: D1=1 for 1974-1981 and zero otherwise, stands 

for the 70s oil crises and the political changes that occurred in Portugal and Spain in the same 

decade. D2 and D3 account for the integration process of the Iberian countries in the EU. This 

process is split into two sub-periods: the pre-integration period (1982-1988), where D2=1 and 

zero otherwise, and the integration period (1989-1999), where D3=1 and zero otherwise.5   

 

Table 1: VAR models description, codification and included variables  
Models’ description and codes  Variables in vector Vt Integration Cointegration 
00 - Reduced Form VAR WF WS WP PP PS PF E NO NO 
01 - Reduced Form VAR WF WS WP PP PS PF & E D1 D2 D3 NO NO 

10 - Differenced VAR ∆WF ∆WS ∆WP ∆PP ∆PS ∆PF ∆E YES  

20 - Cointegrate VAR  WF WS WP PP PS PF E  YES 
21 - Cointegrate VAR WF WS WP PP PS PF & E D1 D2 D3  YES 
21shp - Model 21, under 
symmetry homogeneity, and 
null cross-price effects 

WF WS WP PP PS PF & E D1 D2 D3  YES 

 

Table 1 reports the VAR models under scrutiny. The first column provides the codes and 

summary description of the models. The second one shows the variables included in the 

models with symbol “&” separating endogenous from exogenous regressors. The third and 

fourth indicate which models are subject to integration (differentiation), cointegration or 

                                                
4 The exogenous dummy variables D1, D2 and D3 and the exogenous restriction on E were established as 

relevant in De Mello and Nell (2005). 
5 Although Portugal and Spain joined the European Union (EU) in 1986, the full implications of communitarian 

legislation for some sectors were only attained some years later. Furthermore, we believe that the integration 

period should be extended up until the adoption of the Euro as the common currency in 1999. 
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none. Given the codes in Table 1, we are interested in comparing the forecast performance of 

the models within three different set-ups: first, we compare models from which dummy 

variables and exogeneity restrictions are missing (00 and 20) with models where the dummy 

variables and the exogeneity restriction on E are included (01 and 21). 

Second, we compare models subject to simple integration (10) with models subject to 

cointegration (20 and 21), and models not subject to either integration or cointegration (00 

and 01). This set-up allows for a comparison of reduced form unrestricted VAR models (00 

and 01), repeatedly acclaimed as excellent forecasters, with differenced (integrated) VAR 

models (10), regarded as benchmarks for forecast accuracy ruling (Hendry and Clements, 

1995), and with cointegrated structural VAR models, distrusted as even acceptable forecasters 

by some (Christoffersen and Diebold, 1998), but praised as fair predictors by others (Engle 

and Yoo, 1987; Hendry and Mizon, 1993; Clements and Hendry, 1998). 

A third level of comparison confronts the cointegrated VAR models 21 and 21shp. At this 

level, we want to know if the restrictions of symmetry, homogeneity and null cross-price 

effects between the share equations of Portugal and France6, which are imposed on the 

cointegrated VAR 21shp, make it a better forecaster than the cointegrated VAR 21, which 

ignores these over-identifying restrictions. 

Within these main set-ups, we also consider different forecasting horizons, given that forecast 

accuracy may vary with the horizon’s dimension. Hence, given the 12 out-of-sample point 

forecasts available, we consider the shorter (1-step) and the longer possible (12-step) horizon 

ranges for this comparison exercise.  

 

2.2. Specifying the VAR systems  

The shares of France (WF), Spain (WS) and Portugal (WP), of the UK tourists spending are 

functions of prices (PF, PS and PP), the UK real per capita tourism budget (E) and a set of 

dummy variables (D1, D2 and D3), such that: PS,F,i);D3D2,D1,E,PF,PS,PP,(Wi == f . 

Using data from 1969 to 2005 for the variables in vector [ ]EPFPSPPWSWFt =V , 

the reduced form of a first order unrestricted VAR system of the UK tourism demand for 

France, Spain and Portugal (model 00) is estimated with:  

                                                
6 This restriction was tested and not rejected in De Mello and Nell (2005). 
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t1t10t �zAAz ++= −   (1) 

Where [ ]ttttttt EPFPSPPWSWF'=z , A0 is a (6x1) vector of intercepts, A1 is a 

(6x6) matrix of parameters, and εεεεt is a vector of well behaved disturbances.7  

The corresponding cointegrated vector error correction model (VECM) with endogenous and 

exogenous I(1) variables, intercept and no trend, is: 
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The disturbances are independent and normally distributed; Σ is a positive-definite symmetric 

matrix; )1m( y0 ×ya  and  )1m( x0 ×xa  are vectors of intercepts; )mm( y ×y� ,  is the long-run 

multiplier matrix of order )mm( y × , where xy mmm += ; y�1 , y� 2 ,…, y� ,1−p , are coefficient 

matrices of order )mm( y × , capturing the short-run dynamic effects. 

The system of cointegrated long run equilibrium demand equations for the three destinations 

can be written in the following form: 

                                                
7 Likewise, the form in differences can be expressed as: t1tt �zAAz *

1
*
0 +∆+=∆ − , where tz∆  is written as  

[ ]ttttttt EPFPSPPWSWF' ∆∆∆∆∆∆=∆z  and *
0A , *

1A  and t� , are defined as previously; for forms 

in levels with dummy variables, tz is [ ]tttttttttt 3D2D1DEPFPPPWSWF' S=z .  
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2.2. Testing the VAR systems for cointegration with Johansen’s reduced rank test.  

All variables in the VAR models were previously tested for unit roots and all were found to 

be I(1) . This implies that estimation, inference and forecasting procedures are strictly valid if 

cointegrated relationship(s) exist. De Mello and Nell (2005) report Johansen’s reduced rank 

tests for models 00 and 018 estimated for the period 1969-1997, but do not report these tests 

for the models estimated until 1993.9 Since the models estimated until 1993 are the base for 

generating all the forecasts used in this study, we think that it is important to report the 

reduced rank tests of models 00 and 01 estimated for the in-sample period 1969-1993. 

In a tourism demand context involving a system of two destination share equations, which 

depend on prices and per capita tourism budget of the origin country, the number of existing 

long-run relationships must be equal to the number of share equations in the system. 

Consequently, for both models 00 and 01, we expect to find exactly two cointegrated vectors, 

confirming the existence of two long-run equilibrium relations.  

Johansen’s hypothesis (Johansen, 1991; Johansen and Juselius, 1992), which assumes that 

there are at most r cointegrating vectors in the system, can be tested with either the eigenvalue 

trace statistic (λtrace), which null is qr =  (q = 0, 1,…, n−1) against the alternative 1qr +≥ , or 

the maximum eigenvalue statistic (λmax) which null is qr =  against the alternative of 

1qr += . Table 2 shows the cointegration test results. The first column of Table 2 displays 

the eigenvalues associated with each I(1) endogenous variable, ordered from highest to 

lowest, required to compute λmax and λtrace. The second column shows the various hypotheses 

to be tested. The remaining columns give λmax and λtrace estimates and their respective 5% and 

10% critical values. For both models, at the 5% level, both λmax and λtrace reject the null of 

0r =  and 1r =  (statistic value>critical value), but do not reject 2r =  (statistic value<critical 

                                                
8 Denominated “Purevar” and “Wholevar” respectively, in De Mello and Nell (2005). 
9 Although the authors state, in footnote 7, that such tests were performed with satisfactory outcomes. 
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value). Hence, both statistics unequivocally support two cointegrated vectors. Thus, the 

restriction of 2r =  is included in the system imposing the existence of two long-run 

cointegrated relationships on both VAR models. These models, once subject to cointegrating 

restrictions, acquire different features and, hence, different codes which are set in Table 1. 

The first column of Table 2 displays the eigenvalues associated with each I(1) endogenous 

variable, ordered from highest to lowest, required to compute λmax and λtrace. The second 

column shows the various hypotheses to be tested. The remaining columns give λmax and λtrace 

estimates and their respective 5% and 10% critical values. For both models, at the 5% level, 

both λmax and λtrace reject the null of 0r =  and 1r =  (statistic value>critical value), but do not 

reject 2r =  (statistic value<critical value). 

 

Table 2: Cointegration rank tests for models 00 and 01. 

H0 λmax critical λTrace critical Eigen 
values r m−r 

maxλ̂  
5% 10% traceλ̂  

5% 10% 
MODEL �������� 

λ1=0.9526 = 0 = 6 73.19 40.53 37.65 166.82 102.56 97.87 
λ2=0.8270 = 1 = 5 42.11 34.40 31.73 93.62 75.98 71.81 
λ3=0.6889 = 2 = 4 28.02 28.27 25.80 51.51 53.48 49.95 
λ4=0.4204 = 3 = 3 13.09 22.04 19.86 23.49 34.87 31.93 
λ5=0.2956 = 4 = 2 8.41 15.87 13.81 10.40 20.18 17.88 
λ6=0.0796 = 5 = 1 1.99 9.16 7.53 1.99 9.16 7.53 

MODEL  �������� 
λ1=0.8798 = 0 = 5 53.00 46.77 43.80 147.61 119.77 114.38 
λ2=0.7734 = 1 = 4 42.55 40.91 38.03 94.61 90.60 85.34 
λ3=0.5833 = 2 = 3 28.55 34.51 31.73 52.06 63.10 59.23 
λ4=0.2767 = 3 = 2 15.82 27.82 25.27 23.51 39.94 36.84 
λ5=0.2489 = 4 = 1 7.69 20.63 18.24 7.69 20.63 18.24 

 

Hence, both statistics unequivocally support two cointegrated vectors. Thus, the restriction of 

2r =  is included in the system imposing the existence of two long-run cointegrated 

relationships on both VAR models. These models, once subject to cointegrating restrictions, 

acquire different features and, hence, different codes which are set in Table 1. Accordingly, 

the reduced form VAR 00 subject to cointegration is named VAR 20; and the reduced form 

VAR 01 subject to cointegration is named VAR 21. In the same way, when the reduced form 

VAR 00 is subject to differentiation the resulting first differenced (integrated) VAR is 

labelled model 10. 

 



 

 11 

3. EXPLAINING WHICH MODELS ARE GOING TO BE ASSESSED AND WHY 

De Mello and Nell (2005) consider model 2010 unsuitable to provide reliable information on 

the long-run demand behaviour of UK tourists and dismiss the model altogether, not even 

considering it for forecasting purposes. However, we believe that this model should be used 

for forecasting purposes, not only because it allows us to contrast the predictive ability of 

models which do not include the proper structural breaks and exogenous restrictions, against 

that of models that include them (00 against 01 and 20 against 21), but also because we can 

compare the forecasting ability of models not subject to either cointegration or integration (00 

and 01) with that of models subject to integration (10), and to cointegration (20 and 21). So, 

model 20 becomes indispensable and we use it for this purpose.  

Model 21 is statistically robust (passes all diagnostic tests) and theoretically consistent 

(provides estimates consistent with theory predictions). Hence, it is this model that is further 

subject to over-identifying restrictions on the equilibrium relationships. The theoretical 

restrictions of homogeneity and symmetry, reflecting the logic of consumers’ behaviour, and 

the hypothesis suggesting that price changes in France (Portugal) do not affect UK tourism 

demand for Portugal (France) are not rejected by the data and, therefore, are introduced into 

the cointegrated VAR 21. This model, subject to the additional restrictions of symmetry, 

homogeneity and null cross-price effects between France and Portugal, is labelled 21shp. 

To summarize, we are interested in comparing the forecast performance on three different 

levels. On a first level, we want to compare models from which relevant variables and 

exogeneity restrictions are missing, with models where all relevant variables and proper 

exogeneity restrictions are included, that is: model 00 with model 01; and model 20 with 

models 21. On a second level, we want to compare models not subject to either cointegration 

or integration, to models subject to integration, and models subject to cointegration. That is, 

we compare the benchmark model 10 (subject to integration) with models 00 and 01 (not 

subject to either integration or cointegration) on the one hand, and models 20 and 21 (subject 

to cointegration) on the other hand. The third and final level of comparison considers the 

possibility of over-identifying restrictions, such as homogeneity, symmetry and null cross-

price effects, making a difference in the forecast accuracy of cointegrated VAR models. 

                                                
10 Denominated “Cointegrated Purevar” in De Mello and Nell (2005). 
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Accordingly, we compare the performance of the cointegrated just-identified VAR 21, with 

that of the cointegrated over-identified VAR 21shp. 

All models are estimated for the in-sample period 1969-1993 leaving 12 out-of-sample 

observations from 1994 to 2005, for forecast purposes only. Since the forecast comparisons 

must be established within the same horizon we obtain, for each of the six models, twelve 

one-step and twelve multi-step forecasts for short- and long-run comparisons, respectively. 

 

4. ASSESSING THE MODELS FORECASTING PERFORMANCE 

To compare the forecasting performance of the models, Tables 4, 5, 6 and 7 show the root 

mean squared prediction error (RMSE), and mean absolute percentage error (MAPE), of 1-

step and multi-step forecasts for the tourism shares of France (WF) Spain (WS) and Portugal 

(WP). The last lines of all tables show, for each model, the weighted average of the three 

share equations MAPEs (3EQAV). The measure 3EQAV evaluates each system as a whole by 

weighting the MAPE of each share equation by its market worth. Consequently, this measure 

is used as a yardstick to rank all models. The weights assessing the relative importance of the 

three destinations are their average market shares in the in-sample period 1969-1993. The 

average shares of Portugal, France and Spain are, respectively, 7.75%; of is 35.9%, is 56.35%. 

Hence, WPWSWF MAPE0775,0MAPE0,5635MAPE3590,03EQAV ×+×+×= .  

We also display Figures 1 and 2 showing a plot of the actual values, one-step and multi-step 

forecasts for the shares of France (WF), Spain (WS) and Portugal (WP). Figure 1 depicts one-

step forecasts obtained from the integrated model 10 (best predictor), the cointegrated over-

identified model 21hsp (second best) and the reduced form not subject to either integration or 

cointegration, model 01 (worst predictor). Figure 2, shows the multi-step forecasts obtained 

from cointegrated over-identified model 21hsp (best predictor), cointegrated just-identified 

model 21 (second best) and integrated model 10 (worst predictor). 

Evoking the stages for which we want to carry out the forecast accuracy assessment, first we 

compare models from which the structural breaks and exogeneity restrictions are missing with 

models where these features are included; than we compare the benchmark VAR model 

subject to integration, with models subject to cointegration and not subject to either 

integration or cointegration; finally, we compare cointegrated just- and over-identified 
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models. All these comparisons are carried out for one- and multi-step horizons. The details of 

such analysis unfold in the next sub-sections.  

 

Table 4: Performance of models 00, 10 and 20 for one-step forecasts (1994-2005) 
MODELS with variables WF, WS, WP, PF, PS, PP, E 

����������	
���
 � � � � ����� ��� ��� 
� �����
 � � � � �� �� �� 	�� ��� 
� �����
 � � � � ����

WF WF WF 
RMSE   0,0659710 RMSE   0,0200069 RMSE   0,0634559 
MAPE   0,1476363 MAPE   0,0380789 MAPE   0,1456248 

WS WS WS 
RMSE   0,0602794 RMSE   0,0220751 RMSE   0,0661951 
MAPE   0,0973918 MAPE   0,0286661 MAPE   0,1166185 

WP WP WP 
RMSE   0,0117008 RMSE   0,0099011 RMSE   0,0068995 
MAPE   0,1261156 MAPE   0,0875719 MAPE   0,0737406 
3 EQ AV 11,77% 0,1176557 3 EQ AV 3,66% 0,0366105 3 EQ AV 12,73% 0,1237087 

 

 

Table 5: Performance of models 01, 21 and 21shp for one-step forecasts (1994-2005)   
MODELS with variables: WF, WS, WP, PF, PS, PP & E, D1, D2, D3 

����������	
���
 � � � � ��� � �� 	�� ��� 
� �����
 � � � � ��� � �� 	�� ��� 
� �����
 � � � � ��� � � � �

WF WF WF 
RMSE   0,133521 RMSE   0,044822 RMSE   0,035051 
MAPE   0,326401 MAPE   0,100029 MAPE   0,073017 

WS WS WS 
RMSE   0,126751 RMSE   0,033065 RMSE   0,029885 
MAPE   0,222832 MAPE   0,055678 MAPE   0,044653 

WP WP WP 
RMSE   0,008012 RMSE   0,025773 RMSE   0,008047 
MAPE   0,080179 MAPE   0,294285 MAPE   0,081551 
3 EQ AV 24,90% 0,248958 3 EQ AV 9,00% 0,090092 3 EQ AV 5,77% 0,057695 

 

 

Table 6: Performance of models 00, 10 and 20 for multi-step forecasts (1994-2005)     

MODELS with variables WF, WS, WP, PF, PS, PP, E 

����������	
���
 � � � � ���� ��� ��� 
� �����
 � � � � �� ����� �� 	�� ��� 
� �����
 � � � � ����

WF WF WF 
RMSE   0,051087 RMSE   0,072245 RMSE   0,061082 
MAPE   0,122937 MAPE   0,163151 MAPE   0,145374 

WS WS WS 
RMSE   0,060498 RMSE   0,102375 RMSE   0,058979 
MAPE   0,100146 MAPE   0,164761 MAPE   0,105616 

WP WP WP 
RMSE   0,011194 RMSE   0,032542 RMSE   0,004708 
MAPE   0,126426 MAPE   0,378562 MAPE   0,049234 
3 EQ AV 11,04% 0,110365 3 EQ AV 18,08% 0,180753 3 EQ AV 11,55% 0,115520 
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Table 7: Performance of models 01, 21 and 21shp for multi-step forecasts (1994-2005)  

MODELS with variables: WF, WS, WP, PF, PS, PP & E, D1, D2, D3 

����������	
���
 � � � � ��� � �� 	�� ��� 
� �����
 � � � � ��� � �� 	�� ��� 
� �����
 � � � � ��� � � � �

WF WF WF 
RMSE   0,05898 RMSE   0,02284 RMSE   0,02578 
MAPE   0,13211 MAPE   0,05394 MAPE   0,04944 

WS WS WS 
RMSE   0,09347 RMSE   0,03382 RMSE   0,02364 
MAPE   0,13162 MAPE   0,05623 MAPE   0,03093 

WP WP WP 
RMSE   0,04940 RMSE   0,01954 RMSE   0,00537 
MAPE   0,48191 MAPE   0,22601 MAPE   0,05439 
3 EQ AV 15,89% 0,15896 3 EQ AV 6,86% 0,06857 3 EQ AV 3,94% 0,03939 

 

 

Figure 1: Actual values and one-step forecasts for France, Spain and Portugal shares  
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Figure 2: Actual values and multi-step forecasts for France, Spain and Portugal Shares 

 
 

 

 

4.1. First stage: VARs with and without exogenous restrictions and dummy variables. 

 One-step a-head horizons: Tables 4 and 5 results show that the added dummy variables and 

exogeneity restrictions do not improve the forecasting performance of the reduced form VAR 

models. Quite the opposite, their inclusion doubles the forecast imprecision of these models. 

Indeed, the imprecision of the reduced form VAR, measured by the weighed average 3EQAV, 

increases from 11.8% in model 00 (Table 4), to 24.9% in model 01 (Table 5). 

The opposite occurs with the cointegrated VAR models. The imprecision of model 20 (Table 

4) without the dummy variables and exogeneity restrictions is reduced from 12.4% to 9.0% 

when the dummy variables and exogeneity restrictions are added in model 21(Table 5). The 

forecast imprecision is further reduced to 5.8% in model 21shp (Table 5), when the additional 

restrictions of homogeneity, symmetry and null cross-price effects are incorporated. 
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From the results of Tables 4 and 5 it is apparent that the best forecast performance for one-

step horizons belongs to the differenced (benchmark) VAR model 10 (Table 4), with a 

3EQAV of 3.7%. The second best position belongs to the cointegrated VAR model 21shp 

(Table 5), with a 3EQAV of 5.8%. Yet, the accuracy measures for each of the destination 

shares in both these models do not differ much. Indeed, the forecasts of model 21shp for the 

share of France show a MAPE of 7.3%, against that of 3.8% obtained with model 10; the 

forecasts for the share of Spain in model 21shp show a MAPE of 4.5%, against that of 2.9% 

in model 10; and the forecasts for the share of Portugal in model 21shp show a MAPE of 

8.2%, against that of 8,8% in model 10. Thus, it is possible that the forecast accuracy of 

model 10 is equivalent to that of model 21hsp. To prove the statistical validity of this 

equivalence we subject the forecasts of both models to the scrutiny of equal accuracy tests of 

Diebold and Mariano (1995) and Harvey et al. (1997, 1998). 

Equal accuracy of two competing forecast series, (i) and (j), can be judged by testing the 

significance of the difference ijd  between economic losses associated with forecast error 

series ie  and je . Assuming that the loss related with prediction failure is a symmetric 

function of the forecast error, we allow time t loss associated with a series of n forecasts to be 

a direct function of the forecast error )g(e  such that 2)g(e e= . The null of equal accuracy of 

two competing h-step forecast series (i) and (j) is: 0)E(d
tij = , where )g(e)g(ed

tjtitij −= ; 

t=1,…, n. For testing the null, we use Diebold and Mariano’s (1995) S1  and Harvey et al.’s 

(1997) ∗S1  test statistics. The latter is a modified version of the Diebold and Mariano’s (DM) 

S1  statistic. The DM statistic is defined as: [ ] 21
)dr(âvd

−=S1 . 

Under the null of equal accuracy between two forecast series, S1  is valid for a very wide 

class of loss functions (not needing to be quadratic, symmetric, or continuous), and for 

forecast errors that can be non-Gaussian, nonzero mean, serially correlated and 

contemporaneously correlated. Nonetheless, it can be oversized in small samples and even 

more so as the forecast horizon increases. To alleviating this problem, Harvey et al. (1997) 

propose an approximately unbiased estimator for the variance of d , which gives rise to a 

modified version of the DM test statistic, such that: [ ]{ } 211 n1)h(hn2h1n −+−+= −S1S1* , 

where S1  is the original DM statistic. Harvey et al. (1997) also suggest comparing ∗S1  with 

critical values from the T (n-1) distribution, rather than from the N (0; 1) used for the S1  

statistic. The results for the equal accuracy tests S1  and ∗S1  are reported in Table 8. Based 
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on these results, we can state that, for one-step horizon, the predictive accuracies of 

benchmark model 10 and cointegrated model 21shp are statistically equivalent. 

 

Table 8: Tests of equal forecast accuracy for one-step horizons with models 21shp and 10  

Equal accuracy tests for the forecast series      
of models 10 and 21shp  Test 

Statistic 
Statistic 

Distribution 
5% 

critical 
values STATISTIC 

VALUES 
RESULT 

S1  N(0, 1) ± 1.96 –0.453 Not rejected 
Portugal 

∗S1  T(11) |2.20| –0.434 Not rejected 

S1  N(0, 1) ± 1.96 –0.296 Not rejected 
Spain 

∗S1  T(11) |2.20| –0.283 Not rejected 

S1  N(0, 1) ± 1.96 0.141 Not rejected 
France 

∗S1  T(11) |2.20| 0.135 Not rejected 

 

Multi-step a-head horizons: Considering now the multi-step forecasts in Tables 6 and 7, we 

notice a major difference contrasting with the one-step case: the benchmark VAR model 10 

(Table 6) is now the worse forecaster with an overall imprecision of 18%, while in the one-

step case (Table 4) it was the best predictor, with an overall imprecision of 3.7%. 

Additionally, we notice that the added dummy variables and exogeneity restriction worsen the 

forecasting performance of the reduced form VAR, as they also did in the previous case of the 

one-step horizon. Indeed, the forecast imprecision of 11% (model 00 in Table 6) for the 

reduced form VAR without the dummy variables and exogeneity restrictions, increases to 

16% (model 01 in Table 7) when the dummies and exogeneity restriction are added. 

Again, the opposite occurs with the cointegrated VAR models. The forecast imprecision of 

11.6% for the cointegrated VAR 20 (Table 6) without the dummy variables and exogeneity 

restrictions, is reduced to 6.9% in model 21 (Table 7) where the relevant dummy variables 

and exogeneity restrictions are included. The imprecision is further reduced to 3.9%, when the 

additional restrictions of homogeneity, symmetry and null cross-price effects are added in 

model 21shp (Table 7). 

Because model 21shp presents now the smallest average percentage error (3EQAV), it is 

considered as the best overall forecaster in the multi-step horizon case. Furthermore, this 
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model also presents remarkably accurate forecasts on an equation by equation basis.  Indeed, 

the MAPE for France in model 21shp is 4.9% against 16.3% for the differenced (benchmark) 

model 10, and 12.3% for the reduced form model 00; the MAPE for Spain in model 21shp is 

3.1% against 16.5% in model 10 and 10.0% in model 00; the MAPE for Portugal in model 

21shp is 5.4% against 37.9% of in model 10, and 12.6% in model 00. 

Consequently, the following conclusions can be extracted at this point. First, the reduce form 

VAR models are poor predictors independently of including or not the proper structural 

breaks and exogeneity restrictions, and for whatever forecast horizon. In contrast, the 

accuracy of the cointegrated VAR models improves with the inclusion of the proper structural 

breaks and exogeneity restrictions and more so, with the inclusion of the over-identifying 

restrictions of homogeneity, symmetry and null cross price effects. Once all the restrictions 

are imposed, these models become excellent predictors for both one- or multi-step horizons. 

Finally we conclude that benchmark VAR model 10 and cointegrated VAR model 21shp are 

the best forecasters in the one-step horizon case but, in the multi-step case, the former 

becomes the worst forecaster, while the latter maintains its rank of best predictor. 

 

4.2. Second stage: cointegrated, integrated and reduced form VARs  

One-step a-head horizons: based on Tables 4 and 5 results, we can also compare the short-

run accuracy of models not subject to either integration or cointegration (reduced form VAR 

models 00 and 01) with that of models subject to simple integration (differenced VAR 10) 

and models subject to cointegration (VAR models 20, 21 and 21shp). 

Model 10 (Table 4) subject to integration and model 21shp (Table 5) subject to cointegration, 

can both be considered as the best forecasters in the one-step case because their imprecision 

measures, on an equation-by-equation basis, are not statistically different, as showed by the 

equal accuracy tests displayed in Table 8. Hence, for one-step horizons, integrated and 

cointegrated VAR models perform equivalently in producing the best forecasts. 

The worst forecasters in these circumstances are the models not subject to either integration or 

cointegration. Their overall imprecision is 11.8% for the reduced form VAR 00, and 24.9% 

for the reduced form VAR 01.  Thus, models not subject to either integration or cointegration 

are poor short run predictors. 
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Multi-step a-head horizons: once again, the results in the multi-step case reverse the 

conclusions extracted from the previous one-step case. Indeed, first differenced model 10 

(Table 6) subject to integration, is now the worst forecaster, closely followed by models 00 

(Table 6) and 01 (Table 7), not subject to either integration or cointegration. The cointegrated 

VAR models 21shp and 21 with an overall imprecision of 3.9% and 6.9% (Table 7) are now, 

respectively, the best and second best forecasters. Model 21shp is not only the best overall 

predictor, but also supplies remarkably precise forecasts on an equation-by-equation basis, for 

it gives the smallest MAPE for France (4.9%), Spain (3.1%) and Portugal (5.4%) shares. 

The precision differences between the best forecaster (model 21shp, subject to cointegration) 

and the worse forecaster (model 10, subject to integration) appear significant; to test the 

statistical veracity of those differences, we subject these models to the forecast-encompassing 

tests proposed in Clements and Hendry (1998). These tests are based on the following rules. 

Given two series of forecasts obtained from, say, model A (MA) and model B (MB), the tests 

examine whether the forecasts of MB (fB), can explain the prediction errors of MA (eA) and 

vice-versa. Hence, based on the estimation results of ttBtA εα += fe , which regresses MA 

prediction errors on MB forecasts, the test checks out if the null H0: 0=α  is rejected or not. If 

H0 is rejected, the forecasts of MB explain the prediction errors of MA and hence, MB 

forecast-encompasses MA; if H0 is not rejected, than MB forecasts are not relevant for 

explaining MA prediction errors and thus, MB does not forecast-encompass MA.  

We expect that the tests we are about to carry out show that the forecast precision of models 

21shp and 10 are statistically different, i.e., we expect to find that model 21shp encompasses 

model 10 but model 10 does not encompass model 21shp. If this is the case there will be 

enough evidence to recognize that cointegrated model 21shp outperforms integrated 

(benchmark) model 10. The tests results are displayed in Table 9. 

For all share equations, the results in Table 9 show that model 21shp always encompasses 

model 10 while model 10 never encompasses model 21shp. This means that the forecast 

accuracy of both models is significantly different and that model 21shp outperforms model 

10. In view of these results, it is possible to say that cointegration plays a key role in obtaining 

accurate predictions with VAR models for both short- and long-run horizons scenarios, while 

integration (differentiation) is a main factor of forecast precision only for short range 

horizons. VAR models not subject to either integration or cointegration are poor forecasters 

for both short- and long-run horizons. 
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Table 9: Tests of equal forecast accuracy for models 21shp and 10 and multi-step horizons  

 

model 21shp  
versus  

model 10 
and vice-versa 

Parameter 
estimate 

(NW t-stat)11 

5% 
critical 
value 

RESULTS 

ttt εα += 21shp10 fe F  
)90.2(

1435.0ˆ
−

−=Fα  21shp encompasses 10 
France  

ttt
'εβ += 1021shp fe F  

)34.1(
0306.0ˆ

−
−=Fβ  10 does not encompass 21shp 

ttt εα += 21shp10 fe S  
)64.3(

1676.0ˆ =Sα  21shp encompasses 10 
Spain 

ttt
'εβ += 1021shp fe S  

)96.0(
0206.0ˆ =Sβ  10 does not encompass 21shp 

ttt εα += 21shp10 fe P  
)76.5(

3799.0ˆ
−

−=Pα  21shp encompasses 10 
Portugal 

ttt
'εβ += 1021shp fe P  

)42.1(
0202.0ˆ =Pβ  

2.20 

10 does not encompass 21shp 

 

 

4.3. Third stage: just- and over-identified cointegrated VARs 

The final stage of comparison considers the forecasting performance of just-identified 

cointegrated VAR model 21 with that of the over-identified cointegrated VAR model 21shp 

for one-step (Table 5) and multi-step (Table 7) horizons. In both cases, the cointegrated VAR 

21shp, incorporating homogeneity, symmetry and null cross-price effects, presents smaller 

imprecision measures (both overall, and on an equation-by-equation basis) than the 

cointegrated VAR 21, which ignores those theory consistent restrictions. This means that 

when consumer theory assumptions are included in a well specified cointegrated structural 

VAR, its forecast accuracy increases. Indeed, the overall imprecision reduces from 9.0% in 

model 21 to 5.8% in model 21shp for the one-step horizon (Table 5), and from 6.9% in model 

21 to 3.9% in model 21shp, for the multi-step horizon (Table 7).  

On an equation-by-equation basis, it can also be established that, for both one- and multi-step 

horizons, the cointegrated VAR incorporating the over-identifying restrictions improves the 

forecast precision for all destination shares. Modest precision gains (between 0.5 and 2.5 

                                                
11 The significance tests are preformed using Newey and West (1987) consistent covariance matrix to compute 

the t-statistics (NW t-stat) displayed in brackets.  
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percentage points) are recorded for the shares of France and Spain and a dramatic increase of 

precision is achieved for the share of Portugal. In fact, the MAPE for Portugal drops from 

29.4% to 8.2%, in the one-step case, and from 22.6% to 5.4% in the multi-step case. Yet, the 

statistical significance of these gains of precision must also be checked with proper testing. 

We subject these models to the same forecast-encompassing tests described above. These 

tests results are displayed in Table 10. 

In contrast with the sizable differences between the best and worst forecasters, which 

statistical significances are reported in Table 9, the differences between the best (21shp) and 

second best (21) forecasters do not seem substantial (except for the case of the share of 

Portugal). Hence, we expect that the encompassing tests show that the precision differences 

for the shares of Spain and France to be statistically irrelevant. If this is the case, it constitutes 

evidence of accuracy equivalence between models 21shp and 21 for these equations forecasts. 

 

Table 10: Tests of equal forecast accuracy for models 21shp and 21 and multi-step horizons  

 

Model 21shp 
versus 

Model 21 
and vice-versa 

Parameter 
Estimate 

(NW t-stat) 

5% 
critical 
values 

RESULTS 

ttt εα += 21shp21 fe F  
)11.1(

0254.0ˆ =Fα  21shp does not encompass 21 
France 

ttt
'εβ += 2121shp fe F  

)26.1(
0336.0ˆ
−

−=Fβ  21 does not encompass 21shp 

ttt εα += 21shp21 fe S  
)60.3(

0551.0ˆ
−

−=Sα  21shp encompass 21 
Spain 

ttt
'εβ += 2121shp fe S  

)08.1(
0188.0ˆ =Sβ  21 does not encompass 21shp 

ttt εα += 21shp21 fe P  
)43.9(

2321.0ˆ =Pα  21shp encompass 21 
Portugal 

ttt
'εβ += 2121shp fe P  

)48.1(
0361.0ˆ =Pβ  

2.20 

21 does not encompass 21shp 

 

However, the encompassing tests displayed in table 10 show that, only in the case of the share 

of France, the forecast accuracy of the models is equivalent, being significantly different in 

the cases of Spain and Portugal. Consequently, the over-identified cointegrated VAR 21shp 

outperforms the just-identified cointegrated VAR 21 for the shares of Spain and Portugal, 

being equally precise only in the case of France. 
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5. CONCLUDING REMARKS 

The reported results indicate that the forecast performance of reduced form VAR models is 

poor, for both short and long-run horizons. Moreover, adding the relevant structural breaks or 

imposing the appropriate exogenous restrictions does not help the forecast performance of 

these models. Quite the opposite, the already sizable overall forecast imprecision (about 12%) 

doubles to around 25% when the dummies and exogeneity restrictions are incorporated. Thus, 

we conclude that keeping unrestricted reduced form VAR specifications as plain as possible, 

brings about their best forecasting performance which, in any case, is not commendable. The 

opposite occurs with the cointegrated VAR models. The lack of the relevant structural breaks 

and proper exogeneity restrictions in their specifications generates more imprecise forecasts 

than those obtained with the cointegrated models that include these features. Moreover, these 

models continue to gain accuracy with the incorporation of further over-identifying theory 

assumptions. Indeed, the inclusion of homogeneity, symmetry and null cross-price restrictions 

makes the forecast imprecision of these models to decrease by one half in the one-step 

horizon case, and by one third in the multi-step horizon case. Hence, for both short- and long-

run horizons, well specified cointegrated structural VAR models with all suitable theoretical 

restrictions, forecast better than unrestricted cointegrated forms. Put another way, the more 

structured and restricted cointegrated VAR models are, the better forecasters they become. 

Moreover, their forecast performance is remarkable as settled by their overall accuracy 

measures of less than 6% for one-step horizons and less than 4% for multi-step horizons. 

The forecast precision of the first differenced VAR, used as the benchmark model is 

praiseworthy only in the one-step horizon case, for its average forecast errors do not exceed 

4% of the actual values average. But, in the multi-step horizon case, this model’s overall 

forecast imprecision rises up to 18%. Therefore, the differenced (benchmark) VAR model is 

an excellent short-run forecaster, but a poor one for longer range horizons. 

Once established that the differenced (benchmark) VAR model is an excellent forecaster only 

for short run horizons; that the reduced form VAR models, although poor predictors in any 

case, forecast better the simpler they are; and that cointegrated VAR models predict better the 

more structured and restricted they are, we can now turn our attention to the debate on the role 

of cointegration and integration as potential sources of forecast precision.   
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For one-step horizons, the main conclusion drawn from the evidence gathered in Tables 4 and 

5 is that the integrated model 10 is the best predictor, closely followed by the cointegrated 

model 21shp. However, the tests reported in Table 8 support the equal accuracy hypothesis 

for the performance of these two models. Hence, we might only partially agree with 

Christoffersen and Diebold (1998), in that increased forecast accuracy “may simply be due to 

the imposition of integration, irrespective of whether cointegration is imposed” (p.455) with 

some reservations on the claimed irrelevance of cointegration. In fact, as established by the 

equal accuracy tests, both integration and cointegration contribute equivalently to improve the 

forecast accuracy of VAR models. Yet, due to the form simplicity of the first difference 

(benchmark) VAR, it becomes the obvious choice, only if forecasting is the sole purpose.  

For multi-step horizons, the main conclusion drawn from the evidence gathered in Tables 6 

and 7 is that the cointegrated model 21shp is indisputably and by far the best forecaster, 

clearly outperforming the differenced (benchmark) model 10, subject to integration, and the 

reduced form models 00 and 01, not subject to either integration or cointegration. Hence, 

supported by the encompassing tests of Table 9, we must agree with Engle and Yoo (1987) 

and Clements and Hendry (1998) in that it is cointegration, and not simple integration, that 

makes all the difference in the forecast performance of VAR models for long run horizons.  

In sum, we can say that when forecasting with VAR models, integration is the key factor in 

short-run precision; cointegration is mandatory in long-run horizons and the absence of either 

integration or cointegration brings nothing but poor forecasting whatever the horizon. So, 

models not subject to either integration or cointegration are lousy predictors independently of 

the horizon, and should not be considered either to explain or forecast tourism demand shares. 

Gathering all the evidence together and considering simultaneously the models specifications 

on one side, and integration, cointegration and reduced forms on the other, we can draw the 

following broad conclusion: if a VAR system of equations with identifiable structural breaks 

and exogenous regressors, hosts cointegrated long-run equilibrium relationships and over-

identifying theoretical restrictions, its forecasting competence will only be at its best when all 

these features are incorporated in its equations. Miss one, and the VAR will perform below its 

ability; include all and the VAR becomes a prediction device of uncommon accuracy, even 

for horizons as remote as 8, 10 or 12 steps ahead. 
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APPENDIX 1 
 

1.1 Variables definition 
 

The variables in the VAR equations of the UK tourism demand for France, Spain and 
Portugal are the UK tourism budget shares WP, WS and WF, allocated to the destinations; 
their tourism effective prices PP, PS, PF; and the UK real per capita tourism budget E. Each 

destination share is
PSF

i

EXPEXPEXP
EXP

Wi
++

= , where i = P (Portugal); F (France); S (Spain) 

and EXPi is the nominal tourism expenditure of UK tourists in destination i. The tourism 

effective price in i is ��
�

�
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�

�
=

i

UKi

R
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lnPi , where CPIi is the consumer price index of i, 

CPIUK is the UK consumer price index and Ri is the exchange rate between i and the UK. The 

UK per capita real tourism expenditure allocated to destinations is 
�
�
�

�

�

�
�
�

�

�

=
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*P

UKPEXP
lnE i

i

, 

where UKP is the UK population and P* is the Stone index. 
 
 
1.2 Data sources 
 

The data for UK tourism expenditure, disaggregated by destinations and measured in £ 
million sterling, were obtained from Business Monitor MA6 (1970-1993), continued as Travel 
Trends (1994-2007). Data on the UK population, price indexes and exchange rates were 
obtained from the International Financial Statistics (IMF) Yearbooks (1984, 1990 and 2007). 
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